On the neural correlates of visual perception. (1/4118)

Neurological findings suggest that the human striate cortex (V1) is an indispensable component of a neural substratum subserving static achromatic form perception in its own right and not simply as a central distributor of retinally derived information to extrastriate visual areas. This view is further supported by physiological evidence in primates that the finest-grained conjoined representation of spatial detail and retinotopic localization that underlies phenomenal visual experience for local brightness discriminations is selectively represented at cortical levels by the activity of certain neurons in V1. However, at first glance, support for these ideas would appear to be undermined by incontrovertible neurological evidence (visual hemineglect and the simultanagnosias) and recent psychophysical results on 'crowding' that confirm that activation of neurons in V1 may, at times, be insufficient to generate a percept. Moreover, a recent proposal suggests that neural correlates of visual awareness must project directly to those in executive space, thus automatically excluding V1 from a related perceptual space because V1 lacks such direct projections. Both sets of concerns are, however, resolved within the context of adaptive resonance theories. Recursive loops, linking the dorsal lateral geniculate nucleus (LGN) through successive cortical visual areas to the temporal lobe by means of a series of ascending and descending pathways, provide a neuronal substratum at each level within a modular framework for mutually consistent descriptions of sensory data. At steady state, such networks obviate the necessity that neural correlates of visual experience project directly to those in executive space because a neural phenomenal perceptual space subserving form vision is continuously updated by information from an object recognition space equivalent to that destined to reach executive space. Within this framework, activity in V1 may engender percepts that accompany figure-ground segregations only when dynamic incongruities are resolved both within and between ascending and descending streams. Synchronous neuronal activity on a short timescale within and across cortical areas, proposed and sometimes observed as perceptual correlates, may also serve as a marker that a steady state has been achieved, which, in turn, may be a requirement for the longer time constants that accompany the emergence and stability of perceptual states compared to the faster dynamics of adapting networks and the still faster dynamics of individual action potentials. Finally, the same consensus of neuronal activity across ascending and descending pathways linking multiple cortical areas that in anatomic sequence subserve phenomenal visual experiences and object recognition may underlie the normal unity of conscious experience.  (+info)

Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. (2/4118)

We examined the nature and the selectivity of the motion deficits produced by lesions of extrastriate areas MT and MST. Lesions were made by injecting ibotenic acid into the representation of the left visual field in two macaque monkeys. The monkeys discriminated two stimuli that differed either in stimulus direction or orientation. Direction and orientation discrimination were assessed by measuring thresholds with gratings and random-dots placed in the intact or lesioned visual fields. At the start of behavioral testing, we found pronounced, motion-specific deficits in thresholds for all types of moving stimuli, including pronounced elevations in contrast thresholds and in signal-to-noise thresholds measured with moving gratings, as well as deficits in direction range thresholds and motion coherence measured with random-dot stimuli. In addition, the accuracy of direction discrimination was reduced at smaller spatial displacements (i.e. step sizes), suggesting an increase in spatial scale of the residual directional mechanism. Subsequent improvements in thresholds were seen with all motion stimuli, as behavioral training progressed, and these improvements occurred only with extensive behavioral testing in the lesioned visual field. These improvements were particularly pronounced for stimuli not masked by noise. On the other hand, deficits in the ability to extract motion from noisy stimuli and in the accuracy of direction discrimination persisted despite extensive behavioral training. These results demonstrate the importance of areas MT and MST for the perception of motion direction, particularly in the presence of noise. In addition, they provide evidence for the importance of behavioral training for functional recovery after cortical lesions. The data also strongly support the idea of functional specialization of areas MT and MST for motion processing.  (+info)

Retinotopic mapping of lateral geniculate nucleus in humans using functional magnetic resonance imaging. (3/4118)

Subcortical nuclei in the thalamus, which play an important role in many functions of the human brain, provide challenging targets for functional mapping with neuroimaging techniques because of their small sizes and deep locations. In this study, we explore the capability of high-resolution functional magnetic resonance imaging at 4 Tesla for mapping the retinotopic organization in the lateral geniculate nucleus (LGN). Our results show that the hemifield visual stimulation only activates LGN in the contralateral hemisphere, and the lower-field and upper-field visual stimulations activate the superior and inferior portion of LGN, respectively. These results reveal a similar retinotopic organization between the human and nonhuman primate LGN and between LGN and the primary visual cortex. We conclude that high-resolution functional magnetic resonance imaging is capable of functional mapping of suborganizations in small nuclei together with cortical activation. This will have an impact for studying the thalamocortical networks in the human brain.  (+info)

Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl. (4/4118)

Auditory spatial information is processed in parallel forebrain and midbrain pathways. Sensory experience early in life has been shown to exert a powerful influence on the representation of auditory space in the midbrain space-processing pathway. The goal of this study was to determine whether early experience also shapes the representation of auditory space in the forebrain. Owls were raised wearing prismatic spectacles that shifted the visual field in the horizontal plane. This manipulation altered the relationship between interaural time differences (ITDs), the principal cue used for azimuthal localization, and locations of auditory stimuli in the visual field. Extracellular recordings were used to characterize ITD tuning in the auditory archistriatum (AAr), a subdivision of the forebrain gaze fields, in normal and prism-reared owls. Prism rearing altered the representation of ITD in the AAr. In prism-reared owls, unit tuning for ITD was shifted in the adaptive direction, according to the direction of the optical displacement imposed by the spectacles. Changes in ITD tuning involved the acquisition of unit responses to adaptive ITD values and, to a lesser extent, the elimination of responses to nonadaptive (previously normal) ITD values. Shifts in ITD tuning in the AAr were similar to shifts in ITD tuning observed in the optic tectum of the same owls. This experience-based adjustment of binaural tuning in the AAr helps to maintain mutual registry between the forebrain and midbrain representations of auditory space and may help to ensure consistent behavioral responses to auditory stimuli.  (+info)

Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. (5/4118)

PURPOSE: To compare the test-retest variability characteristics of frequency-doubling perimetry, a new perimetric test, with those of conventional perimetry in glaucoma patients and normal control subjects. METHODS: The study sample contained 64 patients and 47 normal subjects aged 66.16+/-11.86 and 64.26+/-7.99 years (mean +/- SD), respectively. All subjects underwent frequency-doubling perimetry (using the threshold mode) and conventional perimetry (using program 30-2 of the Humphrey Field Analyzer; Humphrey Instruments, San Leandro, CA) in one randomly selected eye. Each test was repeated at 1-week intervals for five tests with each technique over 4 weeks. Empirical 5th and 95th percentiles of the distribution of threshold deviations at retest were determined for all combinations of single tests and mean of two tests, stratified by threshold deviation. The influence of visual field eccentricity and overall visual field loss on variability also were examined. RESULTS: Mean test time with frequency-doubling perimetry in patients and normal control subjects was 5.90 and 5.25 minutes, respectively, and with conventional perimetry was 17.20 and 14.01 minutes, respectively. In patients, there was a significant correlation between the results of the two techniques, in the full field and in quadrants, whereas in normal subjects there was no such correlation. In patients, the retest variability of conventional perimetry in locations with 20-dB loss was 120% (single tests) and 127% (mean tests) higher compared with that in locations with 0-dB loss. Comparative figures for frequency-doubling perimetry were 40% and 47%, respectively. Variability also increased more with threshold deviation in normal subjects tested with conventional perimetry. In both patients and normal subjects, variability increased with visual field eccentricity in conventional perimetry, but not in frequency-doubling perimetry. Both techniques showed an increase in variability with overall visual field damage. CONCLUSIONS: Frequency-doubling perimetry has different test-retest variability characteristics than conventional perimetry and may have potential for monitoring glaucomatous field damage.  (+info)

Selective horizontal dysmetropsia following prestriate lesion. (6/4118)

We describe a patient (P.S.) who, following a right prestriate lesion, reported that objects in the left visual field appeared distorted and smaller than those on the right. Other aspects of visual processing were remarkably unaffected. We carried out a series of size comparison tests using simple or complex stimuli and requiring different types of behavioural responses. We found that P.S. significantly underestimated the size of stimuli presented in her left visual field. When comparison tasks involved stimuli placed along the vertical axis or in the right visual field, P.S. performed well. The vertical and horizontal components of size distortion were found to be differentially affected. We conclude that size processing may be dissociated from other aspects of visual processing, such as form or colour processing, and depends critically on part of the occipital, prestriate areas (Brodmann areas 18-19).  (+info)

Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. (7/4118)

OBJECTIVE: To analyze glaucomatous eyes with known focal defects of the nerve fiber layer (NFL), relating optical coherence tomography (OCT) findings to clinical examination, NFL and stereoscopic optic nerve head (ONH) photography, and Humphrey 24-2 visual fields. DESIGN: Cross-sectional prevalence study. PARTICIPANTS: The authors followed 19 patients in the study group and 14 patients in the control group. INTERVENTION: Imaging with OCT was performed circumferentially around the ONH with a circle diameter of 3.4 mm using an internal fixation technique. One hundred OCT scan points taken within 2.5 seconds were analyzed. MAIN OUTCOME MEASURES: Measurements of NFL thickness using OCT were performed. RESULTS: In most eyes with focal NFL defects, OCTs showed significant thinning of the NFL in areas closely corresponding to focal defects visible on clinical examination, to red-free photographs, and to defects on the Humphrey visual fields. Optical coherence tomography enabled the detection of focal defects in the NFL with a sensitivity of 65% and a specificity of 81%. CONCLUSION: Analysis of NFL thickness in eyes with focal defects showed good structural and functional correlation with clinical parameters. Optical coherence tomography contributes to the identification of focal defects in the NFL that occur in early stages of glaucoma.  (+info)

Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey. (8/4118)

Cross-correlation studies performed in cat visual cortex have shown that neurons in different cortical areas of the same hemisphere or in corresponding areas of opposite hemispheres tend to synchronize their activities. The presence of synchronization may be related to the parallel organization of the cat visual system, in which different cortical areas can be activated in parallel from the lateral geniculate nucleus. We wanted to determine whether interareal synchronization of firing can also be observed in the monkey, in which cortical areas are thought to be organized in a hierarchy spanning different levels. Cross-correlation histograms (CCHs) were calculated from pairs of single or pairs of multiunit activities simultaneously recorded in areas V1 and V2 of paralyzed and anesthetized macaque monkeys. Moving bars and flashed bars were used as stimuli. The shift predictor was calculated and subtracted from the raw CCH to reveal interactions of neuronal origin in isolation. Significant CCH peaks, indicating interactions of neuronal origin, were obtained in 11% of the dual single-unit recordings and 46% of the dual multiunit recordings with moving bars. The incidence of nonflat CCHs with flashed bars was 29 and 78%, respectively. For the pairs of recording sites where both flashed and moving stimuli were used, the incidences of significant CCHs were very similar. Three types of peaks were distinguished on the basis of their width at half-height: T (<16 ms), C (between 16 and 180 ms), and H peaks (>180 ms). T peaks were very rarely observed (<1% in single-unit recordings). H peaks were observed in 7-16% of the single-unit CCHs, and C peaks in 6-16%, depending on the stimulus used. C and H peaks were observed more often when the receptive fields were overlapping or distant by <2 degrees. To test for the presence of synchronization between neurons in areas V1 and V2, we measured the position of the CCH peak with respect to the origin of the time axis of the CCH. Only in the case of a few T peaks did we find displaced peaks, indicating a possible drive of the V2 neuron by the simultaneously recorded V1 cell. All the other peaks were either centered on the origin or overlapped the origin of time with their upper halves. Thus similarly to what has been reported for the cat, neurons belonging to different cortical areas in the monkey tend to synchronize the time of emission of their action potentials with three different levels of temporal precision. For peaks calculated from flashed stimuli, we compared the peak position with the difference between latencies of V1 and V2 neurons. There was a clear correlation for single-unit pairs in the case of C peaks. Thus the position of a C peak on the time axis appears to reflect the order of visual activation of the correlated neurons. The coupling strength for H peaks was smaller during visual drive compared with spontaneous activity. On the contrary, C peaks were seen more often and were stronger during visual stimulation than during spontaneous activity. This suggests that C-type synchronization is associated with the processing of visual information. The origin of synchronized activity in a serially organized system is discussed.  (+info)