Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase. (41/329)

The Escherichia coli aspartate (AATase) and tyrosine (TATase) aminotransferases share 43% sequence identity and 72% similarity, but AATase has only 0.08% and 0.01% of the TATase activities (k(cat)/K(m)) for tyrosine and phenylalanine, respectively. Approximately 5% of TATase activity was introduced into the AATase framework earlier both by rational design (six mutations, termed HEX) and by directed evolution (9-17 mutations). The enzymes realized from the latter procedure complement tyrosine auxotrophy in TATase deficient E. coli. HEX complements even more poorly than does wild-type AATase, even though the (k(cat)/K(m)) value for tyrosine exhibited by HEX is similar to those of the enzymes found from directed evolution. HEX, however, is characterized by very low values of K(m) and K(D) for dicarboxylic ligands, and by a particularly slow release for oxaloacetate, the product of the reaction with aspartate and a TCA cycle intermediate. These observations suggest that HEX exists largely as an enzyme-product complex in vivo. HEX was therefore subjected to a single round of directed evolution with selection for complementation of tyrosine auxotrophy. A variant with a single amino acid substitution, A293D, exhibited substantially improved TATase function in vivo. The A293D mutation alleviates the tight binding to dicarboxylic ligands as K(m)s for aspartate and alpha-ketoglutarate are >20-fold higher in the HEX + A293D construct compared to HEX. This mutation also increased k(cat)/K(m)(Tyr) threefold. A second mutation, I73V, elicited smaller but similar effects. Both residues are in close proximity to Arg292 and the mutations may function to modulate the arginine switch mechanism responsible for dual substrate recognition in TATases and HEX.  (+info)

Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. (42/329)

Chloroplasts synthesize an abundance of different tetrapyrrole compounds. Among them are chlorophyll and its precursor protochlorophyllide (Pchlide), which accumulate in light- and dark-grown plants, respectively. Pchlide is converted to chlorophyllide by virtue of the NADPH:Pchlide oxidoreductase (POR), which, in angiosperms, is the only known light-dependent enzyme of the chlorophyll biosynthetic pathway. In etiolated barley plants, two closely related POR proteins exist termed PORA and PORB, which are nuclear gene products. Here we identified plastid envelope proteins that interact with the cytosolic PORA precursor (pPORA) during its posttranslational chloroplast import. We demonstrate that pPORA interacts with several previously unreported components. Among them is a Pchlide a oxygenase, which provides Pchlide b as import substrate for pPORA, and a tyrosine aminotransferase thought to be involved in the synthesis of photoprotective vitamin E. Two other constituents were found to be orthologs of the GTP-binding proteins Toc33/34 and of the outer plastid envelope protein Oep16.  (+info)

Studies of the effect of dietary cholesterol on hepatic protein synthesis, reduced glutathione levels and serine dehydratase activity in the rat. (43/329)

A basal diet or a basal diet plus 1% of cholesterol and 0.33% cholic acid was fed to rats for varying lengths of time and (1) the activities of liver phosphoenolpyruvate-carboxykinase (PEP-CK), tyrosine transaminase (TT), and serine dehydratase (SD); (2) the rate of total hepatic protein synthesis and (3) the concentration of hepatic reduced glutathione (GSH) were quantitated. The specific activity of PEP-CK was significantly depressed by cholesterol plus cholic acid feeding, while the specific activity of TT was unchanged. No significant effect of dietary cholesterol plus cholic acid was found on the total liver activities. In contrast, SD specific activity was increased 3-fold. The rate of (U-14C)-L-leucine incorporation into total TCA precipitable protein following ingestion of cholesterol plus acid was significantly reduced when the data were expressed as dpm (U-14C)-L-leucine/mg protein. After correcting this expression for specific radioactivity of the liver tissue free leucine pool, no significant effect of dietary cholesterol plus cholic acid on hepatic protein synthesis existed. In fact, the amount of 14C-leucine incorporated into protein on a total liver basis was 50% greater for the cholesterol group. On a per gram of liver basis, the concentration of GSH in the liver of rats fed a cholesterol plus cholic acid diet was significantly decreased. Considering the liver enlargement in rats fed cholesterol plus cholic acid, total organ GSH was found to be significantly greater than for rats fed a basal diet.  (+info)

Inverse correlation between the nitrogen balance and induction of rat liver serine dehydratase (SDH) by dietary protein. (44/329)

Rats of different ages (3 to 15-wk-old) were fed on a 25% casein diet for one week, and the nitrogen balance and liver serine dehydratase (SDH, EC 4.2.1.13) activity were then determined. The value for nitrogen balance decreased with the age of the rats, while the liver SDH activity increased. A statistical analysis showed clear inverse correlation between the two factors (R(2) = 0.7372, p < 0.01). This result suggests that SDH was induced by response to the amount of surplus amino acids from dietary protein taken beyond the body's requirement. The increase in SDH activity was accompanied by an increase in the level of SDH mRNA. Since the half-life of this mRNA did not change significantly, the induction was mainly controlled at the level of transcription. In addition, the induction seems not to be related to gluconeogenesis, since the mRNA levels of tyrosine aminotransferase (TAT) and phosphoenolpyruvate carboxykinase (PEPCK), other gluconeogenic enzymes, were not changed under these experimental conditions.  (+info)

Nature of the accessible chromatin at a glucocorticoid-responsive enhancer. (45/329)

To gain a better understanding of the nature of active chromatin in mammals, we have characterized in living cells the various chromatin modification events triggered by the glucocorticoid receptor (GR) at the rat tyrosine aminotransferase gene. GR promotes a local remodeling at a glucocorticoid-responsive unit (GRU) located 2.5 kb upstream of the transcription start site, creating nuclease hypersensitivity that encompasses 450 bp of DNA. Nucleosomes at the GRU occupy multiple frames that are remodeled without nucleosome repositioning, showing that nucleosome positioning is not the key determinant of chromatin accessibility at this locus. Remodeling affects nucleosomes and adjacent linker sequences, enhancing accessibility at both regions. This is associated with decreased interaction of both the linker histone H1 and the core histone H3 with DNA. Thus, our results indicate that nucleosome and linker histone removal rather than nucleosome repositioning is associated with GR-triggered accessibility. Interestingly, GR induces hyperacetylation of histones H3 and H4, but this is not sufficient either for remodeling or for transcriptional activation. Finally, our data favor the coexistence of several chromatin states within the population, which may account for the previously encountered difficulties in characterizing unambiguously the active chromatin structure in living cells.  (+info)

Isolated small rat hepatocytes express both annexin III and terminal differentiated hepatocyte markers, tyrosine aminotransferase and tryptophan oxygenase, at the mRNA level. (46/329)

We recently showed that annexin III is expressed in isolated small rat hepatocytes but, not in parenchymal hepatocytes. In the present study, we used reverse transcription polymerase chain analysis to examine the annexin III mRNA level in isolated small rat hepatocytes and parenchymal hepatocytes. Annexin III mRNA was detected in isolated small hepatocytes, but not in isolated parenchymal hepatocytes, confirming the presence of annexin III expression in isolated small rat hepatocytes at the mRNA level and indicating that the absence of annexin III expression in isolated parenchymal hepatocytes is due to the absence of annexin III mRNA. Furthermore, we examined the mRNA level of tyrosine aminotransferase and tryptophan oxygenase, two terminally differentiated hepatocyte markers. mRNA for these markers was detected in both parenchymal hepatocytes and small hepatocytes.  (+info)

Microtubule disarray in primary cultures of human hepatocytes inhibits transcriptional activity of the glucocorticoid receptor via activation of c-jun N-terminal kinase. (47/329)

The human glucocorticoid receptor (hGR) plays a pivotal role in cellular processes such as development, differentiation, homeostasis, immune response and in regulation of xenobiotic metabolism. It has been demonstrated recently that colchicine inhibits hGR transcriptional activity in primary cultures of human hepatocytes by a mechanism involving impairment of hGR nucleo-cytoplasmic shuttling. In the present work, we investigated the role of the nuclear factor kappa B (NFkappaB) and c-jun-N-terminal kinase (JNK), the functional hGR antagonists, in this process. We found that microtubule disarray caused by colchicine, vincristine or nocodazole does not activate NFkappaB in human hepatocytes as revealed by p50 and p65 subunits nuclear translocation. On the other hand, we demonstrate that JNK mediates hGR transcriptional inhibition by microtubules disarray, because a specific inhibitor of JNK, 1,9-pyrazoloanthrone (SP600125), partially blocked tyrosine aminotransferase mRNA suppression due to colchicine treatment. In conclusion, JNK is at least partly involved in hGR transcriptional inhibition by colchicine in human hepatocytes, while NFkappaB involvement is doubtful.  (+info)

Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. (48/329)

Glucocorticoids amplify endogenous glucose production in type 2 diabetes by increasing hepatic glucose output. Systemic glucocorticoid blockade lowers glucose levels in type 2 diabetes, but with several adverse consequences. It has been proposed, but never demonstrated, that a liver-selective glucocorticoid receptor antagonist (LSGRA) would be sufficient to reduce hepatic glucose output (HGO) and restore glucose control to type 2 diabetic patients with minimal systemic side effects. A-348441 [(3b,5b,7a,12a)-7,12-dihydroxy-3-{2-[{4-[(11b,17b)-17-hydroxy-3-oxo-17-prop-1-yny lestra-4,9-dien-11-yl] phenyl}(methyl)amino]ethoxy}cholan-24-oic acid] represents the first LSGRA with significant antidiabetic activity. A-348441 antagonizes glucocorticoid-up-regulated hepatic genes, normalizes postprandial glucose in diabetic mice, and demonstrates synergistic effects on blood glucose in these animals when coadministered with an insulin sensitizer. In insulin-resistant Zucker fa/fa rats and fasted conscious normal dogs, A-348441 reduces HGO with no acute effect on peripheral glucose uptake. A-348441 has no effect on the hypothalamic pituitary adrenal axis or on other measured glucocorticoid-induced extrahepatic responses. Overall, A-348441 demonstrates that an LSGRA is sufficient to reduce elevated HGO and normalize blood glucose and may provide a new therapeutic approach for the treatment of type 2 diabetes.  (+info)