Is orphan drug status beneficial to tropical disease control? Comparison of the American and future European orphan drug acts. (9/808)

OBJECTIVES To quantify past outcomes of tropical pharmacology research and development (R & D) and to assess past benefits of the American orphan drug act and potential benefits of the future European orphan drug regulation on tropical diseases. METHODS: This paper presents two analyses: a 1983-97 retrospective study of the United States Orphan Drug Act concerning rare diseases and a prospective study of the European Proposal for a Regulation Concerning Orphan Drugs and its possible impact on tropical diseases. RESULTS: Different programmes have in the past tried to stimulate R & D in this area, but results remain limited. Of 1450 new chemical entities marketed between 1972 and 1997, 13 were specifically for tropical diseases and considered as essential drugs. Between 1983 & 1997, the US Orphan Drug Act approved 837 drugs and marketing of 152 new molecular entities (NMEs). Three NMEs have been designated for malaria and human African trypanosomiasis. Seven others, already commonly used in tropical diseases, received either orphan designation or an orphan approval for another indication. Pharmaceutical companies benefit from the US framework only when the US market exclusivity clause was applicable. Future European orphan drug regulation appears to be similar to the US Orphan Drug Act. CONCLUSION The orphan drug programmes relating to rare diseases have met with some success. Considering tropical diseases rare diseases seems inadequate to boost pharmaceutical R & D. However, some provisions of the European text may be relevant to tropical diseases, admitting the need for a more specific rule for evaluations of this kind of drug and recognizing the existence of 'diseases of exception'.  (+info)

A model for the sequential dominance of antigenic variants in African trypanosome infections. (10/808)

Trypanosoma brucei infects various domestic and wild mammals in equatorial Africa. The parasite's genome contains several hundred alternative and highly diverged surface antigens, of which only a single one is expressed in any cell. Individual cells occasionally change expression of their surface antigen, allowing them to escape immune surveillance. These switches appear to occur in a partly random way, creating a diverse set of antigenic variants. In spite of this diversity, the parasitaemia develops as a series of outbreaks, each outbreak dominated by relatively few antigenic types. Host-specific immunity eventually clears the dominant antigenic types and a new outbreak follows from antigenic types that have apparently been present all along at low frequency. This pattern of sequential dominance by different antigenic types remains unexplained. I use a mathematical model of parasitaemia and host immunity to show that small variations in the rate at which each type switches to other types can explain the observations. My model shows that randomly chosen switch rates do not provide sufficiently ordered parasitaemias to match the observations. Instead, minor modifications of switch rates by natural selection are required to develop a sequence of ordered parasitaemias.  (+info)

Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. (11/808)

A number of mechanisms have been described by which African trypanosomes undergo the genetic switches that differentially activate their variant surface glycoprotein genes (VSGs) and bring about antigenic variation. These mechanisms have been observed mainly in trypanosome lines adapted, by rapid syringe passaging, to laboratory conditions. Such "monomorphic" lines, which routinely yield only the proliferative bloodstream form and do not develop through their life cycle, have VSG switch rates up to 4 or 5 orders of magnitude lower than those of nonadapted lines. We have proposed that nonadapted, or pleomorphic, trypanosomes normally have an active VSG switch mechanism, involving gene duplication, that is depressed, or from which a component is absent, in monomorphic lines. We have characterized 88 trypanosome clones from the first two relapse peaks of a single rabbit infection with pleomorphic trypanosomes and shown that they represent 11 different variable antigen types (VATs). The pattern of appearance in the first relapse peak was generally reproducible in three more rabbit infections. Nine of these VATs had activated VSGs by gene duplication, the tenth possibly also had done so, and only one had activated a VSG by the transcriptional switch mechanism that predominates in monomorphic lines. At least 10 of the donor genes have telomeric silent copies, and many reside on minichromosomes. It appears that trypanosome antigenic variation is dominated by one, relatively highly active, mechanism rather than by the plethora of pathways described before.  (+info)

Resurgence of sleeping sickness in Tambura County, Sudan. (12/808)

Endemic foci of human African trypanosomiasis are present in southern Sudan. In 1996 and 1997, trypanosomiasis increased sharply in Tambura County. To define the magnitude and geographic distribution of the outbreak, we conducted a prevalence survey using population-based cluster sampling in 16 villages: 1,358 participants answered questions about routine activities and tsetse fly contact and received serologic testing. Seroprevalence in the surveyed area was 19.4% (95% confidence interval = 16.9%, 21.8%). We confirmed infection in 66% of seropositive persons who received one parasitologic examination and in 95% of those who had serial examinations of lymph node fluid and blood. Activities related to the civil war, such as temporary migration, were not associated with seropositive status. Since the previous population screening in 1988, the trypanosomiasis prevalence increased two orders of magnitude, and the proportion of villages affected increased from 54% to 100%. Our results suggest that there may be 5,000 cases in Tambura County. The absence of trypanosomiasis control for nearly a decade is a factor in the resurgence of the disease.  (+info)

Reversal of the sleep/wake cycle disorder of sleeping sickness after trypanosomicide treatment. (13/808)

To determine whether the circadian disruption of the sleep/wake cycle observed in sleeping sickness, human African trypanosomiasis (HAT), can be reversed after trypanosomicide treatment, 10 Congolese patients infected by Trypanosoma brucei gambiense underwent 24-h polysomnographic recordings before treatment with melarsoprol and after each of three weekly treatment sessions. Polysomnography consisted of a continuous recording of the electroencephalogram, electromyogram and electro-oculogram on a Minidix Alvar polygraph. Sleep traces were analysed in 20-sec epochs for wakefulness, REM sleep, and NREM sleep [stages 1, 2, 3, 4; stages 3 and 4 representing slow-wave sleep (SWS)]. As previously described (Buguet et al. 1993), the 24-h distribution of the sleep/wake cycle was disturbed proportionally to the severity of the illness. The overall amounts of each sleep/wake stage did not change after treatment. However, the patterns of occurrence of sleep episodes, REM sleep and SWS phases were determinant in the evaluation of treatment efficacy. The trypanosomicide action of melarsoprol led to a reduction in the number of sleep episodes, except in one patient whose health condition worsened during the third treatment session: sleep onset REM sleep phases (SOREMPs) decreased and the number of SWS episodes during a sleep episode increased. We conclude that in HAT, the reversibility of the sleep/wake cycle alteration and that of sleep structure constitute the basis for an evaluation of the healing process.  (+info)

Rhodesian trypanosomiasis in a splenectomized patient. (14/808)

We report the first apparent case of a splenectomized individual who developed severe trypanosomiasis with central nervous system involvement. The patient was a 41-year-old man who participated in an east African safari. Upon his return to the United States, the patient presented with an infection with Trypanosoma brucei rhodesiense that was treated successfully with suramin and melarsoprol. The onset of symptoms, laboratory studies, and disease progression did not differ from previously reported cases in the literature. The role of the spleen in trypanosomiasis is not well understood and the few reports available describe only animal models. This report suggests that asplenia had no apparent effect on the onset of symptoms and overall severity of illness. Further studies are necessary to ultimately define the role of the spleen in trypanosomiasis.  (+info)

Antigenic variation in Trypanosoma brucei infections: an holistic view. (15/808)

Trypanosoma brucei parasites undergo clonal phenotypic (antigenic) variation to promote their transmission between mammals and tsetse-fly vectors. This process is classically considered to be a mechanism for evading humoral immune responses, but such an explanation cannot account for the high rate of switching between variable antigens or for their hierarchical (i.e. non-random) expression. I suggest that these anomalies can be explained by a new model: that antigenic variation has evolved as a bifunctional, rather than as a unifunctional, strategy that not only evades humoral immune responses but also enables competition between parasite strains in concomitantly infected hosts. This competition causes a depression of cellular responses. My proposal gives rise to a number of testable predictions. First, low numbers of trypanosomes should express some variable antigen types (VATs) in infections several weeks before these VATs are detectable. Second, as an infection progresses, the number of VATs expressed simultaneously in the population should decrease. Third, immunisation to generate a T helper 1 response against those VATs that are expressed most frequently should lower parasitaemias and reduce virulence.  (+info)

Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. (16/808)

Stage determination of human African trypanosomiasis is based on the detection of parasites and measurements of biological changes in the cerebrospinal fluid (CSF) (concentration of white blood cells > 5 cells per mm3 and increased total protein levels). The patient is treated accordingly. Demonstration of the absence or presence of trypanosomes by the double centrifugation technique is still the only test available to clinicians for assessing treatment success. In this study, however, we evaluate the polymerase chain reaction (PCR) as a tool for assessing the disease stage of trypanosomiasis and for determining whether treatment has been successful. All 15 study patients considered to be in the advanced stage of the disease were PCR positive; however, trypanosomes were demonstrated by double centrifugation in only 11 patients. Of the five remaining patients, who were considered to be in the early stage, PCR and double centrifugation were negative. Following treatment, 13 of the 15 second-stage patients were found to be negative for the disease in at least two samples by PCR and double centrifugation. Two others were still positive by PCR immediately and one month after the treatment. Trypanosome DNA detection using PCR suggested that the two positive patients were not cured but that their possible relapse could not be identified by a search for parasites using the double centrifugation technique. Further evaluation of the PCR method is required, in particular to determine whether PCR assays could be used in studies on patients who fail to respond to melarsoprol, as observed in several foci.  (+info)