Type 1 deiodinase is stimulated by iodothyronines and involved in thyroid hormone metabolism in human somatomammotroph GX cells. (1/147)

BACKGROUND: Local 5'-deiOdination of l-thyroxine (T4) to the active thyroid hormone, 3,3',5-tri-iodothyronine (T3) via two deiodinase isoenzymes (D1 and D2) has an important role for various T3-dependent functions in the anterior pituitary. However, no evidence has been presented yet for thyroid hormone inactivation via the 5-deiodinase (D3) in anterior pituitary models. METHODS: Using the human somatomammotroph cell line, GX, we analysed effects of T3 and its 5'-deiodination product, 3,5-di-iodothyronine (3,5-T2), on deiodinase activities, measuring release of iodide-125 (125I-) from phenolic-ring- or tyrosyl-ring-labelled substrates respectively. RESULTS: T3 and 3,5-T2 rapidly stimulated D1 activity in GX cells in the presence of serum in the culture medium, whereas D2 activity was not detectable under these conditions. However, when the cells were kept under serum-free conditions, specific activity of D2 reached levels similar to those of D1. With tyrosyl-ring labelled 3, 5-[125I]-,3'-T3 as substrate, a significant release of 125I- was observed in GX cell homogenates. This is comparable to the D1 activity of liver membranes, which preferentially catalyses 5'-deiodination, but to some extent also 5-deiodination, at the tyrosyl ring. CONCLUSIONS: D1 activity of human GX cells is increased by T3 and 3,5-T2. Inactivation of T3 in the anterior pituitary might occur by deiodination at the tyrosyl ring via D1, thus terminating the stimulatory thyroid hormone signal in human somatomammotroph cells.  (+info)

Reverse triiodothyronine, thyroid hormone, and thyrotrophin concentrations in placental cord blood. (2/147)

Reverse triiodothyronine (rT3), triiodothyronine (T3), thyroxine (T4), thyroxine binding globulin (TBG), and thyrotrophin (TSH) were measured in sera from placental cord blood in an unselected series of 272 deliveries. In this series the concentrations of rT3 (mean 3.33 nmol/l, 95% confidence limits 1.6--7.0 nmol/l), were log normally distributed and did not overlap the adult normal range (0.11--0.44 nmol/l). There were no correlations between the cord blood concentrations of rT3, T3, T4, and TSH. The cord serum rT3 concentration was not influenced by maturity, birth-weight, or neonatal risk factors, whereas these factors did affect the concentrations of T3, T4, AND TBG. There is no arteriovenous rT3 concentration difference across the placenta, therefore the cord rT3 reflects the systemic rT3 concentration in the baby at birth. As rT3 in the neonate largely, if not entirely, derives from thyroxine from the fetal thyroid, measurement of the cord rT3 concentration may be a good immediate screening test for neonatal hypothyroidism.  (+info)

Comparison of mechanisms mediating uptake and efflux of thyroid hormones in the human choriocarcinoma cell line, JAR. (3/147)

We compared the specificities of transport mechanisms for uptake and efflux of thyroid hormones in cells of the human choriocarcinoma cell line, JAR, to determine whether triiodothyronine (T3), thyroxine (T4) and reverse T3 (rT3) are carried by the same transport mechanism. Uptake of 125I-T3, 125I-T4 and 125I-rT3 was saturable and stereospecific, but not specific for T3, T4 and rT3, as unlabelled L-stereoisomers of the thyroid hormones inhibited uptake of each of the radiolabelled hormones. Efflux of 125I-T3 was also saturable and stereospecific and was inhibited by T4 and rT3. Efflux of 125I-T4 or 125I-rT3 was, in contrast, not significantly inhibited by any of the unlabelled thyroid hormones tested. A range of compounds known to interfere with receptor-mediated thyroid hormone uptake in cells inhibited uptake of 125I-T3 and 125I-rT3, but not 125I-T4. We conclude that in JAR cells uptake and efflux of 125I-T3 are mediated by saturable and stereospecific membrane transport processes. In contrast, the uptake, but not the efflux, of 125I-T4 and 125I-rT3 is saturable and stereospecific, indicating that uptake and efflux of T4 and rT3 in JAR cells occur by different mechanisms. These results suggest that in JAR cells thyroid hormones may be transported by at least two types of transporters: a low affinity iodothyronine transporter (Michaelis constant, Km, around 1 microM) which interacts with T3, T4 and rT3, but not amino acids, and an amino acid transporter which takes up T3, but not T4 or rT3. Efflux of T4 and rT3 appears to occur by passive diffusion in these cells.  (+info)

Effect of nicotine on type 2 deiodinase activity in cultured rat glial cells. (4/147)

Intracellular generation of triiodothyronine (T3) from thyroxine (T4) by type 2 deiodinase (D2) in the mammalian brain, plays a key role in thyroid hormone action. The presence of D2 in rat astrocytes suggests the importance of glial cells in the regulation of intracellular T3 levels in the rat central nervous system (CNS). To analyze further the factors that regulate D2 activity in the CNS, we investigated the effects of nicotine and of mecamylamine, which inhibits the binding of nicotine with nicotinic acetylcholine receptors, on D2 activity in cultured mixed glial cells of the rat brain. We incubated cultured mixed glial cells obtained from neonatal Wistar rats in the presence of 10 mM dithiothreitol, 2 nM [125I] reverse T3 and 1 mM 6-N-propyl-2-thiouracil for 2 h at 37 degrees C, and the released 125I- was counted in a gamma counter. D2 activity of cultured cells was dependent on the temperature and the amount of protein. The basal D2 activity of rat mixed glial cells was 1.9 +/- 0.2 fmol of I- released/mg protein/h (mean +/- SEM). The addition of 10(-11), 2 x 10(-11), 10(-10), and 10(-9) M nicotine significantly increased D2 activity to approximately 2.2-, 2.4, 3.5- and 2.9-fold the basal level, respectively. D2 activity stimulated by 10(-8) M nicotine (2.5-fold) reached a peak after 9 h incubation. The stimulatory effect of nicotine was completely blocked by 10(-6) M mecamylamine. In conclusion, nicotine increases D2 activity probably via nicotinic acetylcholine receptors, and may influence brain function, at least in part, by affecting thyroid hormone metabolism.  (+info)

Effects of thyroid hormone on action potential and repolarizing currents in rat ventricular myocytes. (5/147)

Thyroid hormones play an important role in cardiac electrophysiology through both genomic and nongenomic mechanisms of action. The effects of triiodothyronine (T(3)) on the electrophysiological properties of ventricular myocytes isolated from euthyroid and hypothyroid rats were studied using whole cell patch clamp techniques. Hypothyroid ventricular myocytes showed significantly prolonged action potential duration (APD(90)) compared with euthyroid myocytes, APD(90) of 151 +/- 5 vs. 51 +/- 8 ms, respectively. Treatment of hypothyroid ventricular myocytes with T(3) (0.1 microM) for 5 min significantly shortened APD by 24% to 115 +/- 10 ms. T(3) similarly shortened APD in euthyroid ventricular myocytes, but only in the presence of 4-aminopyridine (4-AP), an inhibitor of the transient outward current (I(to)), which prolonged the APD by threefold. Transient outward current (I(to)) was not affected by the acute application of T(3) to either euthyroid or hypothyroid myocytes; however, I(to) density was significantly reduced in hypothyroid compared with euthyroid ventricular myocytes.  (+info)

Myosin V plays an essential role in the thyroid hormone-dependent endocytosis of type II iodothyronine 5'-deiodinase. (6/147)

In astrocytes, thyroxine modulates type II iodothyronine 5'-deiodinase levels by initiating the binding of the endosomes containing the enzyme to microfilaments, followed by actin-based endocytosis. Myosin V is a molecular motor thought to participate in vesicle trafficking in the brain. In this report, we developed an in vitro actin-binding assay to characterize the thyroid hormone-dependent binding of endocytotic vesicles to microfilaments. Thyroxine and reverse triiodothyronine (EC(50) levels approximately 1 nm) were >100-fold more potent than 3,5,3'-triiodothyronine in initiating vesicle binding to actin fibers in vitro. Thyroxine-dependent vesicle binding was calcium-, magnesium-, and ATP-dependent, suggesting the participation of one or more myosin motors, presumably myosin V. Addition of the myosin V globular tail, lacking the actin-binding head, specifically blocked thyroid hormone-dependent vesicle binding, and direct binding of the myosin V tail to enzyme-containing endosomes was thyroxine-dependent. Progressive NH(2)-terminal deletion of the myosin V tail and domain-specific antibody inhibition studies revealed that the thyroxine-dependent vesicle-tethering domain was localized to the last 21 amino acids of the COOH terminus. These data show that myosin V is responsible for thyroid hormone-dependent binding of primary endosomes to the microfilaments and suggest that this motor mediates the actin-based endocytosis of the type II iodothyronine deiodinase.  (+info)

Variation in values for iodothyronine hormones, thyrotropin, and thyroxine-binding globulin in normal umbilical-cord serum with season and duration of storage. (7/147)

We measured concentrations of thyroxine, triiodothyronine, reverse triiodothyronine, thyroxine-binding globulin, and thyrotropin in pooled samples of cord sera from normal newborns. Sera collected in winter contain significantly (p less than 0.05) higher concentrations of the first tour--14.9, 13.4, 9k9, and 7.5%, respectively--than do sera collected in summer; thyrotropin concentrations are similar in samples collected during winter and summer (p greater than 0.05). With storage, the values for the thyronines and thyrotropin decreased progressively at rates between 0.9 and 5.3% per year; those for thyroxine-binding globulin did not change significantly.  (+info)

Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory. (8/147)

BACKGROUND: Obese persons generally regain lost weight, suggesting that adaptive metabolic changes favor return to a preset weight. OBJECTIVE: Our objective was to determine whether adaptive changes in resting metabolic rate (RMR) and thyroid hormones occur in weight-reduced persons, predisposing them to long-term weight gain. DESIGN: Twenty-four overweight, postmenopausal women were studied at a clinical research center in four 10-d study phases: the overweight state (phase 1, energy balance; phase 2, 3350 kJ/d) and after reduction to a normal-weight state (phase 3, 3350 kJ/d; phase 4, energy balance). Weight-reduced women were matched with 24 never-overweight control subjects. After each study phase, assessments included RMR (by indirect calorimetry), body composition (by hydrostatic weighing), serum triiodothyronine (T(3)), and reverse T(3) (rT(3)). Body weight was measured 4 y later, without intervention. RESULTS: Body composition-adjusted RMR and T(3):rT(3) fell during acute (phase 2) and chronic (phase 3) energy restriction (P: < 0.01), but returned to baseline in the normal-weight, energy-balanced state (phase 4; mean weight loss: 12.9 +/- 2.0 kg). RMR among weight-reduced women (4771 +/- 414 kJ/d) was not significantly different from that in control subjects (4955 +/- 414 kJ/d; P: = 0.14), and lower RMR did not predict greater 4-y weight regain (r = 0.27, NS). CONCLUSIONS: Energy restriction produces a transient hypothyroid-hypometabolic state that normalizes on return to energy-balanced conditions. Failure to establish energy balance after weight loss gives the misleading impression that weight-reduced persons are energy conservative and predisposed to weight regain. Our findings do not provide evidence in support of adaptive metabolic changes as an explanation for the tendency of weight-reduced persons to regain weight.  (+info)