Urinary 4-pyridoxic acid, plasma pyridoxal phosphate, and erythrocyte aminotransferase levels in oral contraceptive users receiving controlled intakes of vitamin B6. (73/1604)

Fifteen women who had used combination type oral contraceptives (estrogen plus progestogen) and 9 control women who had never used these agents were given a diet deficient in vitamin B6. After 1 month, this diet was supplemented daily with 0.8, 2.0 or 20.0 mg of pyridoxine hydrocholride for an additional month. At weekly intervals, measurements were made of urinary 4-pyridoxic acid, plasma pyridoxal phosphate, and erythocyte alanine and aspartate aminotransterases. No significan differences were observed between oral contraceptive users and controls in any of the above measured indices. The data suggest that if the use of oral contraceptives of the combined estrogen-progestogen type does alter the requirement for vitamin B6, the effect is a mild one and of doubtful clinical significance to the majority of women taking these steroid preparations. The amount of vitamin B6 (as pyridoxine) needed to maintain normal levels of the above indices of vitamin B6 nutrition in these subjects were between 0.8 and 2.0 mg/day.  (+info)

A purF mutant of Mycobacterium smegmatis has impaired survival during oxygen-starved stationary phase. (74/1604)

In this study it was demonstrated that a range of transposon mutants of Mycobacterium smegmatis, previously described as having impaired survival in carbon-starved stationary phase, were not markedly affected in O(2)-starved stationary-phase survival. One exception was 329B, a purine auxotroph, which showed a precipitous reduction in viability from approximately 10(8) to approximately 10(3) c.f.u. ml(-1) during the first 5-10 d in O(2)-starved stationary phase. This was followed by an equally rapid recovery in culturability to a level within 10-100-fold of wild-type levels by 10-20 d into stationary phase. Transduction of the mutation into a clean genetic background demonstrated that the phenotype was due to the transposon insertion, which was shown to be in the purF gene. purF encodes phosphoribosylpyrophosphate amidotransferase, which catalyses the first committed step in purine biosynthesis. The M. smegmatis purF gene, which encodes a protein with a very high degree of similarity to the PurF homologues of Mycobacterium tuberculosis and Mycobacterium leprae, was cloned and shown to substantially complement the O(2)-starvation phenotype. The recovery in culturabilty of the purF mutant in O(2)-starved stationary phase did not involve movement of the transposon. In addition, when cells that had recovered culturability were retested, their survival kinetics in stationary phase were identical to the original culture, indicating that their recovery was not explained by the accumulation of suppressor mutations. It is concluded that the survival curve in O(2)-starved stationary phase for the purF mutant represents its true phenotype and is not a result of subsequent genetic changes in the culture. It is argued that the purF cells lose culturability for a finite period of time in stationary phase. Whether this is due to a fraction of the population dying and then regrowing using a previously undiscovered fermentation pathway, or becoming transiently dormant, or entering an active nonculturable state and subsequently undergoing resuscitation cannot be distinguished at this stage.  (+info)

Localization and expression of BCAT during pregnancy and lactation in the rat mammary gland. (75/1604)

During lactation, branched-chain aminotransferase (BCAT) gene expression increases in the mammary gland. To determine the cell type and whether this induction is present only during lactation, female rats were randomly assigned to one of three experimental groups: pregnancy, lactation, or postweaning. Mammary gland BCAT activity during the first days of pregnancy was similar to that of virgin rats, increasing significantly from day 16 to the last day of pregnancy. Maximal BCAT activity occurred on day 12 of lactation. During postweaning, BCAT activity decreased rapidly to values close to those observed in virgin rats. Analyses by Western and Northern blot revealed that changes in enzyme activity were accompanied by parallel changes in the amount of enzyme and its mRNA. Immunohistochemical studies of the mammary gland showed a progressive increase in mitochondrial BCAT (mBCAT)-specific staining of the epithelial acinar cells during lactation, reaching high levels by day 12. Immunoreactivity decreased rapidly after weaning. There was a significant correlation between total BCAT activity and milk production. These results indicate that the pattern of mBCAT gene expression follows lactogenesis stages I and II and is restricted to the milk-producing epithelial acinar cells. Furthermore, BCAT activity is associated with milk production in the mammary gland during lactation.  (+info)

Effect of different levels of gossypol on transaminase activity, on nonessential to essential amino acid ratio, and on iron and nitrogen retention in rats. (76/1604)

Metabolic experiments with rats fed rations containing varying levels of free gossypol (from 3 to 109 mg/100 g) showed that nitrogen retention was not affected by gossypol while iron absorption decreased as the levels of gossypol in the ration increased. This in turn resulted in lower hematocrit and hemoglobin values and lower levels of iron in the liver. The levels of glutamic-oxaloacetic and glutamic-pyruvic transaminases, an indication of liver necrosis, increased in blood serum and decreased in liver when gossypol was fed. The ratio of nonessential to essential amino acids in both serum and liver increased with increasing levels of gossypol in the diet showing that, in spite of an equalized available lysine intake, the cottonseed pigment was capable of binding this and/or other essential amino acids. In all cases, weight gain was adversely affected by the level of gossypol used.  (+info)

Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by (13)C and (31)P nuclear magnetic resonance. (77/1604)

The relative contribution of glutamate dehydrogenase (GDH) and the aminotransferase activity to mitochondrial glutamate metabolism was investigated in dilute suspensions of purified mitochondria from potato (Solanum tuberosum) tubers. Measurements of glutamate-dependent oxygen consumption by mitochondria in different metabolic states were complemented by novel in situ NMR assays of specific enzymes that metabolize glutamate. First, a new assay for aminotransferase activity, based on the exchange of deuterium between deuterated water and glutamate, provided a method for establishing the effectiveness of the aminotransferase inhibitor amino-oxyacetate in situ, and thus allowed the contribution of the aminotransferase activity to glutamate oxidation to be assessed unambiguously. Secondly, the activity of GDH in the mitochondria was monitored in a coupled assay in which glutamine synthetase was used to trap the ammonium released by the oxidative deamination of glutamate. Thirdly, the reversibility of the GDH reaction was investigated by monitoring the isotopic exchange between glutamate and [(15)N]ammonium. These novel approaches show that the oxidative deamination of glutamate can make a significant contribution to mitochondrial glutamate metabolism and that GDH can support the aminotransferases in funneling carbon from glutamate into the TCA cycle.  (+info)

Purification and properties of two aromatic aminotransferases in Bacillus subtilis. (78/1604)

Two enzymes which transaminate tyrosine and phenylalanine in Bacillus subtilis were each purified over 200-fold and partially characterized. One of the enzymes, termed histidinol phosphate aminotransferase, is also active with imidazole acetyl phosphate as the amino group recipient. Previous studies have shown that mutants lacking this enzyme require histidine for growth. Mutants in the other enzyme termed aromatic aminotransferase are prototrophs. Neither enzyme is active on any other substrate involved in amino acid synthesis. The two enzymes can be distinguished by a number of criteria. Gel filtration analysis indicate the aromatic and histidinol phosphate aminotransferases have molecular weights of 63,500 and 33,000, respectively. Histidinol phosphate aminotransferase is heat-sensitive, whereas aromatic aminotransferase is relatively heat-stable, particularly in the presence of alpha-ketoglutarate. Both enzymes display typical Michaelis-Menten kinetics in their rates of reaction. The two enzymes have similar pH optima and employ a ping-pong mechanism of action. The Km values for various substrates suggest that histidinol phosphate aminotransferase is the predominant enzyme responsible for the transamaination reactions in the synthesis of tyrosine and phenylalanine. This enzyme has a 4-fold higher affinity for tyrosine and phenylalanine than does the aromatic aminotransferase. Competitive substrate inhibition was observed between tyrosine, phenylalanine, and histidinol phosphate for histidinol phosphate aminotransferase. The significance of the fact that an enzyme of histidine synthesis plays an important role in aromatic amino acid synthesis is discussed.  (+info)

Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. (79/1604)

We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.  (+info)

Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. (80/1604)

Angiotensinogen (AGT), one of the major components in the renin-angiotensin system, has been linked to hypertension in humans and animals. We have previously systemically administered antisense oligonucleotides and plasmid vectors with DNA that targeted AGT and attenuated hypertension in spontaneously hypertensive rats. The aim of the present study was to prolong the effect of antisense treatment by the use of a recombinant adeno-associated viral (rAAV) vector targeted to AGT. Using a model of lifelong hypertension in which 5-day-old spontaneously hypertensive rats are treated, a single intracardiac injection of rAAV-AGT-antisense (rAAV-AGT-AS) delayed the onset of hypertension for 91 days and significantly attenuated hypertension in adulthood for up to 6 months. Systolic blood pressure was always lower, by up to 23 mm Hg in the AS-treated group. The vector was stable and expressed a reporter gene in liver, kidney, and heart. The rAAV-AGT-AS treatment significantly decreased left ventricular hypertrophy (P=0.01) and also lowered levels of AGT in the liver (2.78+/-0.61 microgram/g tissue versus 5.23+/-0.41 microgram/g tissue for the sense-treated group, P<0.01). Measurement of liver transaminases showed no evidence for liver toxicity. We conclude that rAAV-AGT-AS offers a safe, stable approach for gene therapy of hypertension.  (+info)