The Tlg SNARE complex is required for TGN homotypic fusion. (57/690)

Using a new assay for membrane fusion between late Golgi/endosomal compartments, we have reconstituted a rapid, robust homotypic fusion reaction between membranes containing Kex2p and Ste13p, two enzymes resident in the yeast trans-Golgi network (TGN). Fusion was temperature, ATP, and cytosol dependent. It was inhibited by dilution, Ca+2 chelation, N-ethylmaleimide, and detergent. Coimmunoisolation confirmed that the reaction resulted in cointegration of the two enzymes into the same bilayer. Antibody inhibition experiments coupled with antigen competition indicated a requirement for soluble NSF attachment protein receptor (SNARE) proteins Tlg1p, Tlg2p, and Vti1p in this reaction. Membrane fusion also required the rab protein Vps21p. Vps21p was sufficient if present on either the Kex2p or Ste13p membranes alone, indicative of an inherent symmetry in the reaction. These results identify roles for a Tlg SNARE complex composed of Tlg1p, Tlg2p, Vti1p, and the rab Vps21p in this previously uncharacterized homotypic TGN fusion reaction.  (+info)

Multimeric connexin interactions prior to the trans-Golgi network. (58/690)

Cells that express multiple connexins have the capacity to form heteromeric (mixed) gap junction hemichannels. We used a dominant negative connexin construct, consisting of bacterial beta-galactosidase fused to the C terminus of connexin43 (Cx43/beta-gal), to examine connexin compatibility in NIH 3T3 cells. Cx43/beta-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool induced by Cx43/beta-gal colocalized with a medial Golgi apparatus marker and was readily disassembled by treatment with brefeldin A. This was unexpected, since previous studies indicated that Cx43 assembly into hexameric hemichannels occurs in the trans-Golgi network (TGN) and is sensitive to brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/beta-gal were assembled into a subhexameric complex. Cx43/beta-gal also specifically interacted with Cx46, but not Cx32, consistent with the ability of Cx43/beta-gal to simultaneously inhibit multiple connexins. We confirmed that interactions between Cx43/beta-gal and Cx46 reflect the ability of Cx43 and Cx46 to form heteromeric complexes, using HeLa and alveolar epithelial cells, which express both connexins. In contrast, ROS osteoblastic cells, which differentially sort Cx43 and Cx46, did not form Cx43/Cx46 heteromers. Thus, cells have the capacity to regulate whether or not compatible connexins intermix.  (+info)

Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. (59/690)

The syntaxin family of soluble N-ethyl maleimide sensitive factor adaptor protein receptors (SNAREs) is known to play an important role in the fusion of transport vesicles with specific organelles. Twenty-four syntaxins are encoded in the genome of the model plant Arabidopsis thaliana. These 24 genes are found in 10 gene families and have been reclassified as syntaxins of plants (SYPs). Some of these gene families have been previously characterized, with the SYP2-type syntaxins being found in the prevacuolar compartment (PVC) and the SYP4-type syntaxins on the trans-Golgi network (TGN). Here we report on two previously uncharacterized syntaxin groups. The SYP5 group is encoded by a two-member gene family, whereas SYP61 is a single gene. Both types of syntaxins are localized to multiple compartments of the endomembrane system, including the TGN and the PVC. These two groups of syntaxins form SNARE complexes with each other, and with other Arabidopsis SNAREs. On the TGN, SYP61 forms complexes with the SNARE VTI12 and either SYP41 or SYP42. SYP51 and SYP61 interact with each other and with VTI12, most likely also on the TGN. On the PVC, a SYP5-type syntaxin interacts specifically with a SYP2-type syntaxin, as well as the SNARE VTI11, forming a SNARE complex likely involved in TGN-to-PVC trafficking.  (+info)

Characterization of E3/49K, a novel, highly glycosylated E3 protein of the epidemic keratoconjunctivitis-causing adenovirus type 19a. (60/690)

The early transcription unit 3 (E3) of human adenoviruses (Ads) encodes proteins with various immunomodulatory functions. Ads from different subgenera differ considerably in their E3 coding capacity, suggesting that distinct sets of immunomodulatory E3 proteins may influence the disease pattern associated with different Ad subgenera. Interestingly, the E3 region of Ads classified in subgenus D, which are often isolated from AIDS patients and have the propensity to cause eye infections, contains a unique gene, named E3/49K, that may encode a protein with a calculated molecular weight of 48,984 that might be implicated in diseases caused by this subgenus. The 49K sequence predicts a highly glycosylated type I transmembrane protein with a short cytoplasmic tail containing two motifs, YXXPhi and LL, potentially involved in targeting the protein to endosomal or lysosomal compartments. Remarkably, the 49K protein is predicted to contain an unusual immunoglobulin-like fold. Here we have characterized the E3/49K protein of Ad type 19a, an Ad of subgenus D which causes epidemic keratoconjunctivitis. E3/49K was synthesized as an 80- to 100-kDa protein, which is unusually large for an E3 protein. In contrast to another early protein, E3/19K, the expression of E3/49K started early but continued throughout the infection cycle. Analysis of the 49K glycosylation revealed that the majority of 49K molecules contained only 12 of the predicted 14 N-glycans. Furthermore, we provide evidence that 49K is O-glycosylated. At steady state, E3/49K was localized in the Golgi-trans-Golgi network and in early endosomes. Interestingly, the 49K protein has a rather short half-life and seems to be proteolytically cleaved. A processing pattern similar to that in the early stages of infection is seen in transfected cells, constitutively expressing 49K in the absence of other Ad proteins. Together, our data provide the first biochemical and cell biological characterization of an unique E3 protein of subgenus D Ads.  (+info)

The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network. (61/690)

Many intracellular vesicle transport pathways involve GTP hydrolysis by the ADP-ribosylation factor (ARF) type of monomeric G proteins, under the control of ArfGAP proteins. Here we show that the structurally related yeast proteins Gcs1 and Age2 form an essential ArfGAP pair that provides overlapping function for TGN transport. Mutant cells lacking the Age2 and Gcs1 proteins cease proliferation, accumulate membranous structures resembling Berkeley bodies, and are unable to properly process and localize the vacuolar hydrolase carboxypeptidase (CPY) and the vacuolar membrane protein alkaline phosphatase (ALP), which are transported from the TGN to the vacuole by distinct transport routes. Immunofluorescence studies localizing the proteins ALP, Kex2 (a TGN resident protein), and Vps10 (the CPY receptor for transport from the TGN to the vacuole) suggest that inadequate function of this ArfGAP pair leads to a fragmentation of TGN, with effects on secretion and endosomal transport. Our results demonstrate that the Gcs1 + Age2 ArfGAP pair provides overlapping function for transport from the TGN, and also indicate that multiple activities at the TGN can be maintained with the aid of a single ArfGAP.  (+info)

Overexpression of an ADP-ribosylation factor-guanine nucleotide exchange factor, BIG2, uncouples brefeldin A-induced adaptor protein-1 coat dissociation and membrane tubulation. (62/690)

BIG2 is a guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and adaptor protein (AP)-1 coat protein complexes. A fungal metabolite, brefeldin A (BFA), inhibits ARF-GEFs and leads to redistribution of coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). To investigate the function of BIG2, we examined the effects of BIG2-overexpression on the BFA-induced redistribution of ARF, coat proteins, and organelle markers. The BIG2 overexpression blocked BFA-induced redistribution from membranes of ARF1 and the AP-1 complex but not that of the COPI complex. These observations indicate that BIG2 is implicated in membrane association of AP-1, but not that of COPI, through activating ARF. Furthermore, not only BIG2 but also ARF1 and AP-1 were found as queues of spherical swellings along the BFA-induced membrane tubules emanating from the TGN. These observations indicate that BFA-induced AP-1 dissociation from TGN membranes and tubulation of TGN membranes are not coupled events and suggest that a BFA target other than ARF-GEFs exists in the cell.  (+info)

Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). (63/690)

Arl1 is a member of the ARF-like protein (Arl) subfamily of small GTPases. Nothing is known about the function of Arl1 except for the fact that it is essential for normal development in Drosophila and that it is associated with the Golgi apparatus. In this study, we first demonstrate that Arl1 is enriched at the trans side of the Golgi, marked by AP-1. Association of Arl1 with the Golgi is saturable in intact cells and depends on N-terminal myristoylation. Over-expression of Arl1(T31N), which is expected to be restricted to the GDP-bound form and thus function as a dominant-negative mutant, causes the disappearance of the Golgi apparatus (marked by Golgi SNARE GS28), suggesting that Arl1 is necessary for maintaining normal Golgi structure. Overexpression of Arl1(Q71L), a mutant restricted primarily to the activated GTP-bound form, causes an expansion of the Golgi apparatus with massive and stable Golgi association of COPI and AP-1 coats. Interestingly, Golgi ARFs also become stably associated with the expanded Golgi. Transport of the envelope protein of vesicular stomatitis virus (VSV-G) along the secretory pathway is arrested at the expanded Golgi upon expression of Arl1(Q71L). The structure of stacked cisternae of the Golgi is disrupted in cells expressing Arl1(Q71L), resulting in the transformation of the Golgi into an extensive vesicule-tubule network. In addition, the GTP form of Arl1 interacts with arfaptin-2/POR1 but not GGA1, both of which interact with GTP-restricted ARF1, suggesting that Arl1 and ARF1 share some common effectors in regulating cellular events. On the basis of these observations, we propose that one of the mechanisms for the cell to regulate the structure and function of the Golgi apparatus is through the action of Arl1.  (+info)

Estrogen lowers Alzheimer beta-amyloid generation by stimulating trans-Golgi network vesicle biogenesis. (64/690)

Estrogen reduces the risk of Alzheimer's disease in post-menopausal women, beta-amyloid (Abeta) burden in animal models of Alzheimer's disease, and secretion of Abeta from neuronal cultures. The biological basis for these effects remains unknown. Here, utilizing cell-free systems derived from both neuroblastoma cells and primary neurons, we demonstrate that 17beta-estradiol (17beta-E2) stimulates formation of vesicles containing the beta-amyloid precursor protein (betaAPP) from the trans-Golgi network (TGN). Accelerated betaAPP trafficking precludes maximal Abeta generation within the TGN. 17beta-E2 appears to modulate TGN phospholipid levels, particularly those of phosphatidylinositol, and to recruit soluble trafficking factors, such as Rab11, to the TGN. Together, these results suggest that estrogen may exert its anti-Abeta effects by regulating betaAPP trafficking within the late secretory pathway. These results suggest a novel mechanism through which 17beta-E2 may act in estrogen-responsive tissues and illustrate how altering the kinetics of the transport of a protein can influence its metabolic fate.  (+info)