Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. (17/18708)

A human cDNA for UDP- N -acetylglucosamine:alpha1,3-d-mannoside beta1,4- N- acetylglucosaminyltransferase (GnT-IV) was isolated from a liver cDNA library using a probe based on a partial cDNA sequence of the bovine GnT-IV. The cDNA encoded a complete sequence of a type II membrane protein of 535 amino acids which is 96% identical to the bovine GnT-IV. Transient expression of the human cDNA in COS7 cells increased total cellular GnT-IV activity 25-fold, demonstrating that this cDNA encodes a functional human GnT-IV. Northern blot analysis of normal tissues indicated that at least five different sizes of mRNA (9.7, 7.6, 5.1, 3.8, and 2.4 kb) forGnT-IV are expressed in vivo. Furthermore, these mRNAs are expressed at different levels between tissues. Large amounts of mRNA were detected in tissues harboring T lineage cells. Also, the promyelocytic leukemia cell line HL-60 and the lymphoblastic leukemia cell line MOLT-4 revealed abundant mRNA. Lastly, the gene was mapped at the locus on human chromosome 2, band q12 by fluorescent in situ hybridization.  (+info)

Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. (18/18708)

We have developed a new tumor-avid amino acid, 1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), labeled with 18F for nuclear medicine imaging. METHODS: [18F]FACBC was prepared with high specific activity (no carrier added [NCA]) and was evaluated for its potential in tumor localization. A comparative study was performed for [18F]FACBC and [18F]2-fluorodeoxyglucose (FDG) in which the uptake of each agent in 9L gliosarcoma (implanted intracerebrally in Fisher 344 rats) was measured. In addition, the first human PET study of [18F]FACBC was performed on a patient with residual glioblastoma multiforme. Quantitative brain images of the patient were obtained by using a Siemens 921 47-slice PET imaging system. RESULTS: In the rat brain, the initial level of radioactivity accumulation after injection of [18F]FACBC was low (0.11 percentage injected dose per gram [%ID/g]) at 5 min and increased slightly to 0.26 %ID/g at 60 min. The tumor uptake exhibited a maximum at 60 min (1.72 %ID/g), resulting in a tumor-to-brain ratio increase of 5.58 at 5 min to 6.61 at 60 min. In the patient, the uptake of [18F]FACBC in the tumor exhibited a maximum concentration of 146 nCi/mL at 35 min after injection. The uptake of radioactivity in the normal brain tissue was low, 21 nCi/mL at 15 min after injection, and gradually increased to 29 nCi/mL at 60 min after injection. The ratio of tumor to normal tissue was 6 at 20 min after injection. The [18F]FACBC PET scan showed intense uptake in the left frontal region of the brain. CONCLUSION: The amino acid FACBC can be radiofluorinated for clinical use. [18F]FACBC is a potential PET tracer for tumor imaging.  (+info)

X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. (19/18708)

Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.  (+info)

Tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine DSS-induced colitis. (20/18708)

In the present study, we examined histochemically the tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine colitis induced by administering DSS in the drinking water. DSS was mainly observed in the Kupffer cells of the liver, in the macrophages of the mesenteric lymph node (MLN) and in the lamina propria of the large intestine after administration of DSS. We followed the time course of DSS distribution and found that DSS, which was considered as a large and negatively charged molecule that can not easily cross membranes, was distributed in the liver, the MLN, and the large intestine 1 day after the start of administration of DSS.  (+info)

Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. (21/18708)

Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  (+info)

Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. (22/18708)

Synaptic clustering of neurotransmitter receptors is crucial for efficient signal transduction and integration in neurons. PDZ domain-containing proteins such as PSD-95/SAP90 interact with the intracellular C termini of a variety of receptors and are thought to be important in the targeting and anchoring of receptors to specific synapses. Here, we show that PICK1 (protein interacting with C kinase), a PDZ domain-containing protein, interacts with the C termini of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors in vitro and in vivo. In neurons, PICK1 specifically colocalizes with AMPA receptors at excitatory synapses. Furthermore, PICK1 induces clustering of AMPA receptors in heterologous expression systems. These results suggest that PICK1 may play an important role in the modulation of synaptic transmission by regulating the synaptic targeting of AMPA receptors.  (+info)

The cerebral metabolic consequences of nitric oxide synthase deficiency: glucose utilization in endothelial and neuronal nitric oxide synthase null mice. (23/18708)

Nitric oxide has multiple physiologic roles in the CNS. Inhibiting nitric oxide synthesis might therefore alter functional activity within the brain. We used [14C]-2-deoxyglucose in vivo autoradiography to measure local CMRglc in "knockout" mice lacking the genes for either the endothelial (eNOS) or neuronal (nNOS) isoforms of nitric oxide synthase, and in the progenitor strains (SV129, C57B1/6). Glucose utilization levels did not significantly differ between nNOS and eNOS knockout mice and C57B1/6 mice in any of the 48 brain regions examined, but were relatively lower in some subcortical regions in SV129 mice.  (+info)

Modifications of local cerebral metabolic rates for glucose and motor behavior in rats with unilateral lesion of the subthalamic nucleus. (24/18708)

Inactivation of the subthalamic nucleus (STN) has attracted interest as a therapeutic tool in Parkinson's disease. The functional consequences of the inactivation, however, are uncertain. In this study definition of the pattern of changes of cerebral functional activity associated with lesion of the STN and dopaminergic stimulation, by using the [14C]deoxyglucose method, was sought. Six or 7 days following unilateral lesion of the STN, the animals were divided into two groups: One group (n = 10) was administered apomorphine (1 mg/kg) subcutaneously; the second group (n = 10) received saline. The [14C]deoxyglucose procedure was initiated 10 minutes following the drug or saline injection. The results show that systemic administration of apomorphine to rats with unilateral lesion of the STN causes ipsiversive rotational behavior and asymmetries of glucose utilization of defined brain areas, including the substantia nigra reticulata, globus pallidus, and entopeduncular nucleus. These nuclei are the main targets of the subthalamic excitatory projections. Lesion of the nucleus per se (without challenge with apomorphine) has no significant consequences on glucose utilization. The findings indicate that the STN is involved in the activation of the basal ganglia output nuclei induced by systemic dopaminergic stimulation.  (+info)