Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. (17/3269)

Steroid receptor co-activator 1 (SRC-1) is a transcription co-factor that enhances the hormone-dependent action, mediated by the thyroid hormone (TH) receptor (TR) and other nuclear receptors. In vitro studies have shown that SRC-1 is necessary for the full expression of TH effect. SRC-1 knockout mice (SRC-1(-/-)) provide a model to examine the role of this co-activator on TH action in vivo. At baseline, SRC-1(-/-) mice display resistance to TH (RTH) as evidenced by a 2.5-fold elevation of serum TSH levels, despite a 50% increase in serum free TH levels as compared with wild-type (SRC-1(+/+)) mice. When mice were made hypothyroid, TSH levels increased, obliterating the difference between SRC-1(+/+) and SRC-1(-/-) mice observed at baseline. In contrast, the decline of TSH by treatment with L-triiodothyronine was severely blunted in SRC-1(-/-) mice. These data indicate that SRC-1 is not required for the upregulation of TSH in TH deficiency. However, SRC-1 enhances the sensitivity of TSH downregulation by TH. This is the first demonstration of RTH caused by a deficient co-factor other than TR. It supports the hypothesis that a putative defect in the SRC-1 gene or another co-factor could be the cause of RTH in humans without mutations in the TR genes.  (+info)

Screening methods for thyroid hormone disruptors. (18/3269)

The U.S. Congress has passed legislation requiring the EPA to implement screening tests for identifying endocrine-disrupting chemicals. A series of workshops was sponsored by the EPA, the Chemical Manufacturers Association, and the World Wildlife Fund; one workshop focused on screens for chemicals that alter thyroid hormone function and homeostasis. Participants at this meeting identified and examined methods to detect alterations in thyroid hormone synthesis, transport, and catabolism. In addition, some methods to detect chemicals that bind to the thyroid hormone receptors acting as either agonists or antagonists were also identified. Screening methods used in mammals as well as other vertebrate classes were examined. There was a general consensus that all known chemicals which interfere with thyroid hormone function and homeostasis act by either inhibiting synthesis, altering serum transport proteins, or by increasing catabolism of thyroid hormones. There are no direct data to support the assertion that certain environmental chemicals bind and activate the thyroid hormone receptors; further research is indicated. In light of this, screening methods should reflect known mechanisms of action. Most methods examined, albeit useful for mechanistic studies, were thought to be too specific and therefore would not be applicable for broad-based screening. Determination of serum thyroid hormone concentrations following chemical exposure in rodents was thought to be a reasonable initial screen. Concurrent histologic evaluation of the thyroid would strengthen this screen. Similar methods in teleosts may be useful as screens, but would require indicators of tissue production of thyroid hormones. The use of tadpole metamorphosis as a screen may also be useful; however, this method requires validation and standardization prior to use as a broad-based screen.  (+info)

Risk of iodine-induced thyrotoxicosis after coronary angiography: an investigation in 788 unselected subjects. (19/3269)

In this study, the risk of iodine-induced thyrotoxicosis in unselected patients from an iodine-deficient area was investigated. The patients were consecutively enrolled. Thyroid hormone values and urinary iodine excretion were determined before, as well as 1, 4 and 12 weeks after iodine contamination by coronary angiography. Two of 788 unselected patients developed hyperthyroidism within 12 weeks. The two patients did not belong to a risk group for iodine-induced thyrotoxicosis (i.e. old people, patients with goiter or possible thyroid autonomy, low TSH). Both patients had normal TSH levels at baseline and ultrasound of the thyroid was without evidence of nodules. The study shows that in euthyroid unselected patients from an iodine-deficient area short-term iodine contamination by contrast media rarely leads to hyperthyroidism. On account of these facts, prophylactic therapy, e.g. by perchlorate or thiamazole, is not generally recommended, because the risk of side-effects is perhaps even greater than the risk of iodine-induced thyrotoxicosis.  (+info)

Biochemical hypothyroidism secondary to iodine deficiency is associated with poor school achievement and cognition in Bangladeshi children. (20/3269)

Iodine deficiency in pregnancy leads to poor cognitive function in the offspring; however, the effect of concurrent iodine deficiency on school-aged children is not clear. Several studies have shown that school children in iodine-deficient villages have poorer cognitive function than children in iodine-sufficient villages. However, villages differ in many factors that may also detrimentally affect children's development. In addition, the children's nutritional and health status has not usually been taken into account. In this study, we compared the cognitive function and school achievement levels of 170 children who had recently had low thyroxine (T4) levels [T4 /=70 nmol/L (euthyroid)]. The children were matched for school and grade level and came from the same iodine-deficient regions in rural Bangladesh. They were given a battery of cognitive, motor and school achievement tests. We also measured their nutritional status, examined their stools for geohelminths and assessed their home environments. A factor analysis of cognitive and motor function tests yielded two factors, a general cognitive factor and a fine motor factor. The children's height and arm circumference, experience of hunger, parental characteristics and stimulation in the home made independent contributions to their test scores. Controlling for these variables, the hypothyroid children performed worse than the euthyroid children on reading and spelling and the general cognitive factor. These findings indicate that a large number of disadvantages including hypothyroidism are related to the poor development of these children.  (+info)

Identification of thyroid hormone residues on serum thyroglobulin: a clue to the source of circulating thyroglobulin in thyroid diseases. (21/3269)

Thyroglobulin (Tg) present in the serum of normal individuals and patients with thyroid disorders could be partly newly synthesized non-iodinated Tg and partly Tg containing iodine and hormone residues originating from the lumen of thyroid follicles. With the aim of examining the contribution of the latter source of Tg to the elevation of serum Tg concentration in thyroid pathophysiological situations, we devised a procedure to identify thyroxine (T4) and tri-iodothyronine (T3) residues on Tg from unfractionated serum. A two-step method, basedon (i)adsorption of Tg on an immobilized anti-human Tg (hTg) monoclonal antibody (mAb) and (ii)recognition of hormone residues on adsorbed Tg by binding of radioiodinated anti-T4 mAb and anti-T3 mAb, was used to analyze serum Tg from patients with either Graves' disease (GD), subacute thyroiditis (ST) or metastatic differentiated thyroid cancer (DTC). Purified hTg preparations with different iodine and hormone contents were used as reference. Adsorption of purified Tg and serum Tg on immobilized anti-hTg mAb ranged between 85 and 90% over a wide concentration range. Labeled anti-T4 and anti-T3 mAbs bound to adsorbed purified Tg in amounts related to its iodine content. Tg adsorbed from six out of six sera from ST exhibited anti-T4 and anti-T3 mAb binding activities. In contrast, significant mAb binding was only observed in one out of eight sera from untreated GD patients and in 1 out of 13 sera from patients with DTC. The patient with DTC, whose serum Tg contained T4 and T3, represented a case of hyperthyroidism caused by a metastatic follicular carcinoma. In conclusion, we have identified, for the first time, T4 and T3 residues on circulating Tg. The presence of Tg with hormone residues in serum is occasional in GD and DTC but is a common and probably distinctive feature of ST.  (+info)

Clinical study on early changes in thyroid function of hyperthyroidism treated with propylthiouracil and a relatively small dose of iodide. (22/3269)

In order to compare the acute effects of three kinds of antithyroid agents of iodide (I-), propylthiouracil (PTU) and PTU combined with iodide (PTU+I-) on thyroid function in hyperthyroid patients with diffuse goiter, serum concentrations of thyroxine (T4), triiodothyronine (T3), T3-resin sponge uptake (T3-RU) and free thyroxine index (FT4I) were employed as thyroid function parameters. In the group given iodine (1 mg/day) as iodinated-lecithine, the initial values of T4, T3, T3-RU and FT4I were 20.9 +/- 1.6 microng/100 ml (T4), greater than 740 ng/100 ml (T3), 49.5 +/- 2.3% (T3-RU) and 14.7 +/- 1.8 (FT4I). At the end of one week of therapy, they decreased clearly to 15.6 +/- 2.2 microng/100 ml, 457 +/- 87 ng/100 ml, 42.2 +/- 4.0% and 9.7 +/- 2.4. The so-called "escape phenomenon" from iodide inhibition was observed in serum T4, T3-RU and FT4I values at the end of two weeks of iodide therapy, while serum T3 continued to decrease but the value of T3 was far outside of the normal range. In the PTU group (300 mg/day), thyroid function parameters were 22.5 +/- 0.8 microng/100 ml (T4), greater than 592 ng/100 ml (T3), 54.9 +/- 1.0% (T3-RU) and 18.7 +/- 1.0 (FT4I) before treatment. They decreased continually week by week. At the end of four-week treatment with PTU, the value of each thyroid function parameter was 11.1 +/- 1.9 microng/100 ml, 229 +/- 56 ng/100 ml, 36.6 +/- 4.4% and 5.7 +/- 1.7. In the group of hyperthyroidism simultaneously given both PTU and iodide (300 mg/PTU and 1 mg/iodine), these thyroid function parameters decreased as well as in the group treated with PTU alone for more than two weeks. More rapid or significant decrease of T4, T3, T3-RU and ft4i in PTU+I- group than in PTU group was observed in the present study. These results suggested strongly that iodide alone was not an adequate therapy for hyperthyroidism as well known and they were also compatible with the idea that the concomitant administration of PTU and iodide was more effective in the early phase of therapy of hyperthyroidism than PTU alone.  (+info)

Pertechnetate scintigraphy in primary congenital hypothyroidism. (23/3269)

Primary congenital hypothyroidism (PCH) is currently detected effectively by heel-stick screening. When elevated thyrotropin (TSH) and/or decreased T4 are found in the blood of neonates, they are recalled, values are confirmed in venous blood and thyroxine replacement therapy (TRT) is immediately instituted, thus cretinism or severe retardation is prevented. However, in a significant percentage of neonates with abnormal blood levels of T4 or TSH, the disorder is transient. To help determine the exact cause of PCH and the possibility of transient PCH, pinhole thyroid imaging is performed 30 min after an intravenous injection of 18.5 MBq (500 microCi) 99mTc-pertechnetate (TcPT). Patients with a nonvisualized gland or patients with images suggesting dyshormonogenesis are reevaluated at age 3-4 y to exclude transient PCH. METHODS: To define the role of TcPT imaging in determining the exact etiology of PCH and the possibility of its being transient, we reviewed data from 103 neonates with PCH who had scintigraphy in our laboratory between 1970 and 1996 and we correlated the results with clinical outcome. RESULTS: Four patterns of thyroid scintigrams were recognized and these determined patient classification: (a) normal in 7 patients with false-positive heel-stick screening but normal venous blood hormone levels; (b) hypoplasia-ectopia in 32 patients requiring lifelong TRT; (c) nonvisualization in 35 patients-32 with agenesis requiring lifelong TRT and 3 with fetal thyroid suppression by maternal antibodies whose TRT was discontinued at a later age; and (d) dyshormonogenesis (markedly increased TcPT concentration) in 29 patients-25 with permanent PCH requiring lifelong TRT and 4 with transient PCH in whom TRT was discontinued. Of the 25 patients with dyshormonogenesis, 12 belonged to five families with two or three siblings having the same disorder. CONCLUSION: TcPT thyroid scintigraphy in the neonate with PCH provides a more specific diagnosis, is useful for selecting patients for re-evaluation to uncover transient PCH and discontinue TRT and defines dyshormonogenesis, which is familial and requires genetic counseling. It is also cost-effective.  (+info)

Thyroid hormone suppresses hepatic sterol 12alpha-hydroxylase (CYP8B1) activity and messenger ribonucleic acid in rat liver: failure to define known thyroid hormone response elements in the gene. (24/3269)

Sterol 12alpha-hydroxylase (CYP 8B1) is a microsomal cytochrome P450 enzyme involved in bile acid synthesis that is of critical importance for the composition of bile acids formed in the liver. Thyroidectomy of rats caused a more than twofold increase of CYP8B1 and an almost fourfold increase of the corresponding mRNA levels compared to sham-operated rats. Treatment of intact rats with thyroxine caused a 60% reduction of enzyme activity and a 50% reduction of mRNA levels compared to rats injected with saline only. To investigate whether the promoter of the gene contains thyroid hormone response elements, the complete structure of the rat gene was defined. In similarity with the corresponding gene in mouse, rabbit and man, the rat gene was found to lack introns. It had an open reading frame containing 1500 bp corresponding to a protein of 499 amino acid residues. Although thyroid hormone decreased CYP8B1 activity and mRNA in vivo, no hitherto described thyroid hormone response elements were identified 1883 bases upstream of the transcription start site. It is concluded that rat CYP8B1 is regulated by thyroid hormone at the mRNA level. The results are discussed in relation to the structure of the gene coding for the enzyme.  (+info)