The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). (73/803)

The synthesis of deoxy-thymidine di-phosphate (dTDP)-L-rhamnose, an important component of the cell wall of many microorganisms, is a target for therapeutic intervention. The first enzyme in the dTDP-L-rhamnose biosynthetic pathway is glucose-1-phosphate thymidylyltransferase (RmlA). RmlA is inhibited by dTDP-L-rhamnose thereby regulating L-rhamnose production in bacteria. The structure of Pseudomonas aeruginosa RmlA has been solved to 1.66 A resolution. RmlA is a homotetramer, with the monomer consisting of three functional subdomains. The sugar binding and dimerization subdomains are unique to RmlA-like enzymes. The sequence of the core subdomain is found not only in sugar nucleotidyltransferases but also in other nucleotidyltransferases. The structures of five distinct enzyme substrate- product complexes reveal the enzyme mechanism that involves precise positioning of the nucleophile and activation of the electrophile. All the key residues are within the core subdomain, suggesting that the basic mechanism is found in many nucleotidyltransferases. The dTDP-L-rhamnose complex identifies how the protein is controlled by its natural inhibitor. This work provides a platform for the design of novel drugs against pathogenic bacteria.  (+info)

Adenovirus type 2 DNA replication. I. Evidence for discontinuous DNA synthesis. (74/803)

Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA.  (+info)

Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. (75/803)

Capsular polysaccharide (CPS) is a major virulence factor in Streptococcus pneumoniae. CPS gene clusters of S. pneumoniae types 4, 6B, 8, and 18C were sequenced and compared with those of CPS types 1, 2, 14, 19F, 19A, 23F, and 33F. All have the same four genes at the 5' end, encoding proteins thought to be involved in regulation and export. Sequences of these genes can be divided into two classes, and evidence of recombination between them was observed. Next is the gene encoding the transferase for the first step in the synthesis of CPS. The predicted amino acid sequences of these first sugar transferases have multiple transmembrane segments, a feature lacking in other transferases. Sugar pathway genes are located at the 3' end of the gene cluster. Comparison of the four dTDP-L-rhamnose pathway genes (rml genes) of CPS types 1, 2, 6B, 18C, 19F, 19A, and 23F shows that they have the same gene order and are highly conserved. There is a gradient in the nature of the variation of rml genes, the average pairwise difference for those close to the central region being higher than that for those close to the end of the gene cluster and, again, recombination sites can be observed in these genes. This is similar to the situation we observed for rml genes of O-antigen gene clusters of Salmonella enterica. Our data indicate that the conserved first four genes at the 5' ends and the relatively conserved rml genes at the 3' ends of the CPS gene clusters were sites for recombination events involved in forming new forms of CPS. We have also identified wzx and wzy genes for all sequenced CPS gene clusters by use of motifs.  (+info)

Zidovudine phosphorylation determined sequentially over 12 months in human immunodeficiency virus-infected patients with or without previous exposure to antiretroviral agents. (76/803)

We sought to determine whether the intracellular activation of zidovudine (ZDV) varied over time and with previous antiretroviral exposure in human immunodeficiency virus-infected individuals and to examine whether there is an association between virological responses and intracellular phosphorylation. A total of 23 patients (12 treatment naive, 11 previously treated with ZDV) who commenced ZDV as part of dual nucleoside therapy were prospectively monitored for 12 months or until withdrawal from the study. No association was observed between virological responses at 2 weeks and 3 months and ZDV phosphorylation. The mean intracellular concentrations of ZDV mono-, di-, and triphosphates did not change significantly over time or with previous ZDV exposure. The rate of formation of total ZDV phosphates was increased in patients with CD4 counts <100 cells/mm(3). Previous reports from in vitro cell culture experiments or cross-sectional cohort studies suggesting alterations of ZDV phosphorylation over time are not confirmed by this longitudinal study.  (+info)

Biological, biochemical, and physicochemical evidence for the existence of the polyadenylic-polyuridylic-polyinosinic acid triplex. (77/803)

When primary rabbit kidney cell cultures are treated with either polyadenylic acid-polyuridylic acid or polyadenylic acid-polyribothymidylic acid (poly(rT)) and then judiciously exposed to actinomycin D and cycloheximide, high titers of interferon are found in the extracellular medium ("superinduction") (Vilcek, J. (1970) Ann. N. Y. Acad. Sci. 173, 390-403; Tan, Y. H., Armstrong, J. A., Ke, Y. H., and Ho, M. (1970) Proc. Natl. Acad. Sci. U. S. A. 67, 464-471). If polyinosinic acid is added 1 hour prior to, simultaneously with, or 1 hour after the active interferon inducers, dramatic reductions in interferon production from the "superinduced" cells result. Based on experiments involving sucrose gradient ultracentrifugation, pancreatic ribonuclease A resistance, ultraviolet mixing curves, and ultraviolet absorbance-temperature profiles, the explanation for this phenomenon was determined to be the formation of polynucleotide triplexes in the following way: poly(A)-poly(U) + poly(I) yields poly(A)-poly(U)-poly(I)poly(A)-poly(rT) + poly(I) yields poly(A)-poly(rT)-poly(I). In addition, based on similar methodology, the following reactions involving these triplexes were demonstrated: poly(A)-2 poly(I) + poly(U) yields poly(A)-poly(U)-poly(I) + poly(I)poly(A)-2 poly(I) + poly(rT) yields poly(A)-poly(rT)-poly(I) + poly(I)POLY(A)-2 poly(I) + 2 poly(U) yields poly(A)-2 poly(U) + 2 poly(I) and POLY(A)-poly(U)-poly(I) + poly (U) yields poly(A)-2 poly(U) + poly(I).  (+info)

Potentiation of inhibition of wild-type and mutant human immunodeficiency virus type 1 reverse transcriptases by combinations of nonnucleoside inhibitors and d- and L-(beta)-dideoxynucleoside triphosphate analogs. (78/803)

Combinations of reverse transcriptase (RT) inhibitors are currently used in anti-human immunodeficiency virus therapy in order to prevent or delay the emergence of resistant virus and to improve the efficacy against viral enzymes carrying resistance mutations. Drug-drug interactions can result in either positive (additive or synergistic inhibition) or adverse (antagonistic interaction, synergistic toxicity) effects. Elucidation of the nature of drug interaction would help to rationalize the choice of antiretroviral agents to be used in combination. In this study, different combinations of nucleoside and nonnucleoside inhibitors, including D- and L-(beta)-deoxy- and -dideoxynucleoside triphosphate analogues, have been tested in in vitro RT assays against either recombinant wild-type RT or RT bearing clinically relevant nonnucleoside inhibitor resistance mutations (L100I, K103N, Y181I), and the nature of the interaction (either synergistic or antagonistic) of these associations was evaluated. The results showed that (i) synergy of a combination was not always equally influenced by the individual agents utilized, (ii) a synergistic combination could improve the sensitivity profile of a drug-resistant mutant enzyme to the single agents utilized, (iii) L-(beta)-enantiomers of nucleoside RT inhibitors were synergistic when combined with nonnucleoside RT inhibitors, and (iv) inter- and intracombination comparisons of the relative potencies of each drug could be used to highlight the different contributions of each drug to the observed synergy.  (+info)

Murine terminal deoxynucleotidyl transferase: cellular distribution and response to cortisone. (79/803)

The mouse thymus contains two forms of terminal deoxynucleotidyl transferase (TdT) which are distinguishable by the salt concentration necessary to elute them from a phosphocellulose column, by their distrubtion among the thymocyte subpopulations, and by their sensitivity to cortisone treatment. In the whole thymus the later eluting peak (peak II) is the predominant one with about 3-10% of the total activity appearing in peak I. Both peak I and peak II activities are most sensitively assayed by the polymerization of dGMP onto an oligo(dA) primer. The minor population of thymocytes which is less dense and cortisone-resistant contains a higher specific activity of peak I TdT. The majority of TdT activity is, however, found in the major population of thymocytes which occurs in the center region of a bovine serum albumin gradient and is cortisone-sensitive. A very low level of an activity indistinguishable from peak II TdT activity is also detected in the mouse bone marrow. Other tissues, such as spleen, liver, heart, and brain lack detectable amounts of TdT activity.  (+info)

Preparation and separation of d(pT)-10-n oligonucleotides. (80/803)

A series of oligomers having the general formula d(pT)-10-n, n varying from 2 to 20, has been prepared by enzymatic joining of d(pT)-10, annealed on poly dA, employing T-4 polynucleotide ligase. The oligomers could be separated on 8 or 12% polyacrylamide gels. Such oligomers may prove useful as molecular weight markers and initiators for various polymerases.  (+info)