SLC19A3 encodes a second thiamine transporter ThTr2. (65/735)

Recently, a new family of facilitative carriers has been cloned consisting of the reduced folate (SLC19A1) and the thiamine (SLC19A2) transporters. Despite a high level of sequence identity and similarity there is essentially no functional overlap between these carriers. The former transports folates and the latter thiamine. In this paper we describe the function of SLC19A3, another member of this transporter family most recently cloned, after transient transfection of the cDNA into HeLa cells. Uptake of [3H]thiamine, but not of methotrexate nor folic acid, was enhanced in SLC19A3 transfectants relative to vector control. Similarly, in the transfectants thiamine transport increased with an increase in pH with peak activity at pH approximately 7.5. While [3H]thiamine uptake was markedly inhibited by nonlabeled thiamine it was not inhibited by several organic cations in 100-fold excess. Hence this carrier has a high degree of specificity for vitamin B1. The data indicate that SLC19A3 has the characteristics of SLC19A2 (ThTr1) and represents a second thiamine transporter (ThTr2) in this family of facilitative carriers.  (+info)

Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae. (66/735)

Kinetic and spectroscopic data indicated that addition of the donor substrate hydroxypyruvate to the thiamin diphosphate (ThDP)-dependent enzyme transketolase (TK) led to the accumulation of the alpha-carbanion/enamine of (alpha,beta-dihydroxyethyl) ThDP, the key reaction intermediate in enzymatic thiamin catalysis. The three-dimensional structure of this intermediate trapped in the active site of yeast TK was determined to 1.9-A resolution by using cryocrystallography. The electron density suggests a planar alpha-carbanion/enamine intermediate having the E-configuration. The reaction intermediate is firmly held in place through direct hydrogen bonds to His-103 and His-481 and an indirect hydrogen bond via a water molecule to His-69. The 4-NH(2) group of the amino-pyrimidine ring of ThDP is within 3 A distance to the alpha-hydroxy oxygen atom of the dihydroxyethyl moiety but at an angle unfavorable for a strong hydrogen bond. No structural changes occur in TK on formation of the reaction intermediate, suggesting that the active site is poised for catalysis and conformational changes during the enzyme reaction are not very likely. The intermediate is present with high occupancy in both active sites, arguing against previous proposals of half-of-the-sites reactivity in yeast TK.  (+info)

Plasma level and transfer capacity of thiamin in patients undergoing long-term hemodialysis. (67/735)

Water-soluble vitamins have a molecular size small enough to pass through the membrane of an artificial kidney. This fact has led to the suggestion that these vitamins be substituted in patients undergoing long-term hemodialysis. In sharp contrast to this general belief, our study has shown that the plasma thiamin levels in patients on long-term hemodialysis were not different from those found in normal subjects. It also remained unchanged before and after the dialysis, althoug thiamin was obviously removed in in vitro dialysis. Accordingly, dietary thiamin appears to be sufficient, making further supplementation unnecessary.  (+info)

Riboflavin is a determinant of total homocysteine plasma concentrations in end-stage renal disease patients. (68/735)

The effect of thiamine (vitamin B(1)) or riboflavin (vitamin B(2)) availability on fasting total homocysteine (tHcy) plasma levels in end-stage renal disease patients is unknown. A cross-sectional study was performed in a population of non-vitamin supplemented patients maintained on continuous ambulatory peritoneal dialysis. Red blood cell availability of thiamine (alpha-ETK) and of riboflavin (alpha-EGR), along with other predictors of tHcy plasma levels, was considered in the analysis. There was a linear association of alpha-EGR with tHcy plasma concentrations (P = 0.009), which was not observed for alpha-ETK. Among red blood cell vitamins, alpha-EGR was the only predictor of tHcy levels (P = 0.035), whereas alpha-ETK, red blood cell pyridoxal-5-phosphate supply (alpha-EGOT) and red blood cell folate levels had no effect. The risk for having a high tHcy plasma levels within the fourth quartile (plasma tHcy >38.3 micromol/L) was increased by an alpha-EGR > median (odds ratio, 4.706; 95% confidence interval, 1.124 to 19.704; P = 0.026). By way of contrast, alpha-ETK had no effect in these analyses. Independent predictors of tHcy plasma levels were serum albumin, alpha-EGR, red blood cell folate, and certain MTHFR genotypes. A logistic regression analysis showed that the MTHFR genotype is a predictor for having a tHcy plasma concentration within the fourth quartile. In summary, riboflavin availability, as measured by alpha-EGR, is a determinant of fasting tHcy plasma levels in peritoneal dialysis patients. This finding may have implications for tHcy lowering therapy in individuals with end-stage renal disease.  (+info)

Elevated levels of ketopantoate hydroxymethyltransferase (PanB) lead to a physiologically significant coenzyme A elevation in Salmonella enterica serovar Typhimurium. (69/735)

Pantothenate is the product of the ATP-dependent condensation of pantoate and beta-alanine and is a direct precursor of coenzyme A. A connection exists between pantothenate biosynthesis and thiamine biosynthesis in Salmonella enterica serovar Typhimurium since derivatives of a purF mutant that can grow (on glucose medium) in the absence of thiamine excrete pantothenate. We show here that the causative mutation in three such mutants was the addition of a CG base pair upstream of the panB gene. This base addition brings the spacing between the -10 and -35 hexamers of the promoter to a consensus spacing of 17 bp and results in increased transcription of the pan operon. Furthermore, overexpression of PanB caused by this mutation, or by other means, was necessary and sufficient to increase pantothenate production and allow PurF-independent thiamine synthesis on glucose medium.  (+info)

A hybrid input-output approach to model metabolic systems: an application to intracellular thiamine kinetics. (70/735)

Models of the dynamics of complex metabolic systems offer potential benefits to the deep comprehension of the system under study as well as for the performance of certain tasks. Unfortunately, dynamic modeling of a great deal of metabolic systems may be problematic due to the incompleteness of the available knowledge about the underlying mechanisms and to the lack of an adequate observational data set. In theory, a valid alternative to classical structural modeling through ordinary differential equations could be represented by input-output approaches. But, in practice, such methods, which learn the nonlinear dynamics of the system from input-output data, fail when the experimental data set is poor either in size or in quality. Such a situation is not rare in the case of metabolic systems. This paper deals with a hybrid approach which aims at overcoming the problems addressed above. More specifically, it allows us to solve the identification problems of the intracellular thiamine kinetics in the intestine tissue. The method, which is half way between the structural and input-output approach, uses the outcomes of the simulation of a qualitative structural model to build a good initialization of a fuzzy system identifier. Such an initialization allows us to efficiently cope with both the incompleteness of knowledge and the inadequacy of the available data set, and to derive an input-output model of the intracellular thiamine kinetics in the intestine tissue. The comparison of the predictions of the intracellular thiamine kinetics obtained by the application of such a model with those obtained by traditional approaches, namely compartmental models, neural networks, and fuzzy systems, highlighted a better performance of our model. As the structural assumptions are relaxed, we obtained a model slightly less informative than a purely structural one but robust enough to be used as a simulator. The paper also discusses the interpretative potential offered by such a model, as tested on diabetic subjects.  (+info)

Expression and promoter analysis of SLC19A2 in the human intestine. (71/735)

The molecular mechanism and regulation of the intestinal uptake process of dietary thiamine is not well understood. Previous studies have established the involvement of a carrier-mediated system for thiamine uptake in the human intestine. Recently a human thiamine transporter, SLC19A2, was cloned from a number of human tissues. Little, however, is known about expression of the SLC19A2 message along the native human gastrointestinal tract, and no analysis of its promoter in intestinal tissue is available. Therefore, the current studies were aimed at investigating the expression of SLC19A2 in the human gastrointestinal tract and at analyzing the promoter of this potential intestinal thiamine transporter. First we cloned SLC19A2 cDNA from a human intestinal cell line (Caco-2) by reverse transcriptase-polymerase chain reaction, then used this cDNA as a probe in Northern blot analysis. SLC19A2 message was found to be expressed in all gastrointestinal tissues in the following order: liver>stomach>duodenum>jejunum>colon>cecum>rectum>ileum. SLC19A2 was also expressed at the protein level in Caco-2 cells and in native human small intestine by Western blot analysis. We also cloned the 5'-regulatory region of the SLC19A2 gene and confirmed activity of its promoter following transfection into intestinal epithelial Caco-2 cells. Furthermore, we identified the minimal promoter region required for basal activity of SLC19A2 in these cells which was found to be mainly encoded in a sequence between -356 and -36, and included multiple cis-regulatory elements. Transcription initiation sites of the SLC19A2 gene in intestinal epithelial Caco-2 cells were also identified by 5'-rapid amplification of cDNA ends. These results demonstrate that SLC19A2 is expressed in various regions of the human gastrointestinal tract. In addition, the results provide the first characterization of the SLC19A2 promoter. These findings raise the possibility that SLC19A2 may play a role in the normal intestinal thiamine absorption process.  (+info)

Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. (72/735)

Although the reduced folate carrier RFC1 and the thiamine transporters THTR-1 and THTR-2 share approximately 40% of their identity in protein sequence, RFC1 does not transport thiamine and THTR-1 and THTR-2 do not transport folates. In the present study, we demonstrate that transport of thiamine monophosphate (TMP), an important thiamine metabolite present in plasma and cerebrospinal fluid, is mediated by RFC1 in L1210 murine leukemia cells. Transport of TMP was augmented by a factor of five in cells (R16) that overexpress RFC1 and was markedly inhibited by methotrexate, an RFC1 substrate, but not by thiamine. At a near-physiological concentration (50 nM), TMP influx mediated by RFC1 in wild-type L1210 cells was approximately 50% of thiamine influx mediated by thiamine transporter(s). Within 1 min, the majority of TMP transported into R16 cells was hydrolyzed to thiamine with a component metabolized to thiamine pyrophosphate, the active enzyme cofactor. These data suggest that RFC1 may be one of the alternative transport routes available for TMP in some tissues when THTR-1 is mutated in the autosomal recessive disorder thiamine-responsive megaloblastic anemia.  (+info)