SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. (1/17)

Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New World and Old World monkey species, Tarsius bancanus, and a nonprimate outgroup. Fourteen size-polymorphic amplification patterns exhibited longer fragments for the anthropoids (New World and Old World monkeys) and T. bancanus whereas shorter fragments were detected for the strepsirhines and the outgroup. From these, subsequent sequence analyses revealed three Alu transpositions, which can be regarded as shared derived molecular characters linking tarsiers and anthropoid primates. Concerning the other loci, scenarios are represented in which different SINE transpositions occurred independently in the same intron on the lineages leading both to the common ancestor of anthropoids and to T. bancanus, albeit at different nucleotide positions. Our results demonstrate the efficiency and possible pitfalls of SINE transpositions used as molecular cladistic markers in tracing back a divergence point in primate evolution over 40 million years old. The three Alu insertions characterized underpin the monophyly of haplorhine primates (Anthropoidea and Tarsioidea) from a novel perspective.  (+info)

The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. (2/17)

Inconsistencies between phylogenetic interpretations obtained from independent sources of molecular data occasionally hamper the recovery of the true evolutionary history of certain taxa. One prominent example concerns the primate infraordinal relationships. Phylogenetic analyses based on nuclear DNA sequences traditionally represent Tarsius as a sister group to anthropoids. In contrast, mitochondrial DNA (mtDNA) data only marginally support this affiliation or even exclude Tarsius from primates. Two possible scenarios might cause this conflict: a period of adaptive molecular evolution or a shift in the nucleotide composition of higher primate mtDNAs through directional mutation pressure. To test these options, the entire mt genome of Tarsius bancanus was sequenced and compared with mtDNA of representatives of all major primate groups and mammals. Phylogenetic reconstructions at both the amino acid (AA) and DNA level of the protein-coding genes led to faulty tree topologies depending on the algorithms used for reconstruction. We propose that these artifactual affiliations rather reflect the nucleotide compositional similarity than phylogenetic relatedness and favor the directional mutation pressure hypothesis because: (1) the overall nucleotide composition changes dramatically on the lineage leading to higher primates at both silent and nonsilent sites, and (2) a highly significant correlation exists between codon usage and the nucleotide composition at the third, silent codon position. Comparisons of mt genes with mt pseudogenes that presumably transferred to the nucleus before the directional mutation pressure took place indicate that the ancestral DNA composition is retained in the relatively fossilized mtDNA-like sequences, and that the directed acceleration of the substitution rate in higher primates is restricted to mtDNA.  (+info)

Observations on the vomeronasal organ of prenatal Tarsius bancanus borneanus with implications for ancestral morphology. (3/17)

Adult primates have at least five known phenotypes of vomeronasal organ (VNO), ranging from the typical morphology seen in most other mammals to complete absence. With such morphological disparity, the phylogenetic value and any inferences on ancestral VNO morphology of the primate VNO are left uncertain. The present study investigated the VNO of embryonic and fetal Tarsius bancanus borneanus (n = 4) in comparison with prenatal specimens from four other species of primates in an effort to clarify adult morphological variations. In all except one of the fetal primates, the VNO communicated to the nasopalatine duct. One exception occurred in the largest fetal Tarsius (25 mm crown-rump length), in which the VNO communicated with the nasal cavity alone. The vomeronasal neuroepithelium was well differentiated from a thinner, non-sensory epithelium in all Tarsius and New World monkeys studied, as well as late embryonic and fetal Microcebus myoxinus. In anterior sections, this neuroepithelium was found in a more superior location in Tarsius and New World monkeys compared with Microcebus myoxinus. In all primates, masses of cell bodies were found superior to the VNO, intermingled with nerve fibres. These morphologically resembled luteinizing hormone-releasing hormone neurons described in other mammals, including humans, suggesting that a primitive association of these neurons with the VNO may exist in all primate taxa. The present study revealed that prenatal similarities exist in Tarsius and New World primates in VNO epithelial morphology. However, these are transient stages of morphology. If tarsiers and anthropoids do represent a clade (Haplorhini), then the atypical morphology seen in adult tarsiers and New World monkeys probably represents the adult VNO morphology of a haplorhine common ancestor.  (+info)

Overview of the visual system of Tarsius. (4/17)

Tarsiers, which are currently considered to constitute the sister group of anthropoid primates, exhibit a number of morphological specializations such as remarkably large eyes, big ears, long hind legs, and a nearly naked tail. Here we provide an overview of the current state of knowledge on the tarsier visual system and describe recent anatomical observations from our laboratory. Its large eyes notwithstanding, the most remarkable feature of the tarsier brain is the large size and distinct lamination of area V1. Based on the need of tarsier for optimal scotopic vision and acuity to detect small prey in low lighting conditions, tarsiers may have preserved a high level of visual acuity by enlarging V1 at the expense of other areas. The other classically described visual regions are present in tarsier, albeit many borders are not clearly distinct on histochemical or immunohistochemical preparations. Tarsiers also have a large number and unusual distributions of cones in the retina, with high numbers of M/L-cones in the central retina and S-cones surprisingly at the periphery, which may be sensitive to UV light and may be useful for prey detection. These adaptive specializations may together account for the unique nocturnal predatory requirements of tarsiers.  (+info)

Cranial remains of an Eocene tarsier. (5/17)

The phylogenetic position of tarsiers relative to anthropoids and Paleogene omomyids remains a subject of lively debate that lies at the center of research into anthropoid origins. Omomyids have long been regarded as the nearest relatives of tarsiers, but a sister group relationship between anthropoids and tarsiers has also been proposed. These conflicting phylogenetic reconstructions rely heavily on comparisons of cranial anatomy, but until now, the fossil record of tarsiers has been limited to a single jaw and several isolated teeth. In this article, we describe cranial material of a fossil tarsiid from the middle-Eocene Shanghuang fissure-fillings in southern Jiangsu Province, China. This facial fragment, which is allocated to Tarsius eocaenus, is virtually identical to the corresponding anatomy in living tarsiers and differs substantially from that of early anthropoids such as Bahinia, Phenacopithecus, and Parapithecus. This new specimen indicates that tarsiers already possessed greatly enlarged orbits and a haplorhine oronasal configuration by the time they are first documented in the fossil record during the middle Eocene.  (+info)

Craniofacial growth in fetal Tarsius bancanus: brains, eyes and nasal septa. (6/17)

The tarsier skull has been of particular interest in studies of primate taxonomy and functional morphology for several decades. Despite this, there remains no comprehensive data on how the tarsier skull develops, especially in relation to the soft-tissues of the head. Here we have documented for the first time fetal development of the skull and brain as well as the nasal septum and eyes in T. bancanus. We have also tested for the possible influence of these tissues in shaping skull architecture. Nineteen post-mortem specimens were imaged using high-resolution magnetic resonance imaging and magnetic resonance microscopy. Landmarks and volume data were collected and analysed. Findings demonstrated massive increases of brain size and eye size as well as flattening of the midline cranial base, facial projection and orbital margin frontation. Little evidence was found to support the notion that growth of the brain or nasal septum physically drives the observed changes of the skull. However, increases in the size of the eyes relative to skull size were associated with orbital margin frontation. With the possible exception of the results for eye size, the findings indicate that rather than forcing change the soft-tissues form a framework that physically constrains the morphogenetic template of the skeletal elements. This suggests, for example, that the degree of cranial base angulation seen in adulthood is not directly determined by brain expansion bending the basicranium, but by brain enlargement limiting the extent of cranial base flattening (retroflexion) in the fetus.  (+info)

Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. (7/17)

 (+info)

Shouldering the burdens of locomotion and posture: glenohumeral joint structure in prosimians. (8/17)

 (+info)