Biosynthesis of surfactant protein C: characterization of aggresome formation by EGFP chimeras containing propeptide mutants lacking conserved cysteine residues. (1/212)

Surfactant protein C (SP-C) is a lung-specific secreted protein, which is synthesized as a 21-kDa propeptide (SP-C(21)) and then proteolytically processed as a bitopic transmembrane protein in subcellular compartments distal to the medial Golgi to produce a 3.7 kDa mature form. We have shown that initial processing of SP-C(21) involves two endoproteolytic cleavages of the C terminus and that truncation of nine amino acids from the C-flanking peptide resulted in retention of mutant protein in proximal compartments. Because these truncations involved removal of a conserved cysteine residue (Cys(186)), we hypothesized that intralumenal disulfide-mediated folding of the C terminus of SP-C(21) is required for intracellular trafficking. To test this, cDNA constructs encoding heterologous fusion proteins consisting of enhanced green fluorescent protein (EGFP) attached to the N terminus of wild-type rat proSP-C (EGFP/SP-C(1-194)), C-terminally deleted proSP-C (EGFP/SP-C(1-185); EGFP/SP-C(1-191)) or point mutations of conserved cysteine residues (EGFP/SP-C(C122G); EGFP/SP-C(C186G); or EGFP/SP-C(C122/186G)) were transfected into A549 cells. Fluorescence microscopy revealed that transfected EGFP/SP-C(1-194) and EGFP/SP-C(1-191 )were expressed in a punctate pattern within CD-63 positive, EEA-1 negative cytoplasmic vesicles. In contrast, EGFP/SP-C(1-185), EGFP/SP-C(C122G), EGFP/SP-C(C186G) and EGFP/SP-C(C122/186G) were expressed but retained in a juxtanuclear compartment that stained for ubiquitin and that contained (&ggr;)-tubulin and vimentin, consistent with expression in aggresomes. Treatment of cells transfected with mutant proSP-C with the proteasome inhibitor lactacysteine enhanced aggresome formation, which could be blocked by coincubation with nocodazole. Western blots using a GFP antibody detected a single form in lysates of cells transfected with EGFP/SP-C cysteine mutants, without evidence of smaller degradation fragments. We conclude that residues Cys(122) and Cys(186) of proSP-C are required for proper post-translational trafficking. Mutation or deletion of one or both of these residues results in misfolding with mistargeting of unprocessed mutant protein, leading to formation of stable aggregates within aggresomes.  (+info)

Comparison of functional efficacy of surfactant protein B analogues in lavaged rats. (2/212)

Leakage of plasma proteins into the alveoli inhibits pulmonary surfactant function and worsens respiratory failure. Surfactant protein B (SP-B), is essential for surfactant function, but the N-terminal domain of human SP-B (residues 1.25, SP-B1-25) can mimic the biophysical properties of full length SP-B1-78 in vitro. The authors compared the function and inhibition resistance of synthetic surfactant preparations containing SP-B analogues to a natural bovine surfactant preparation "Survanta". Eight groups of eight rats were lavaged to induce surfactant deficiency, fibrinogen was instilled as a surfactant inhibitor, and then they were rescued with exogenous surfactant. Five experimental surfactants were formulated by mixing 3% SP-B1-78, or an equimolar amount of SP-B1-25 and/or 1% palmitoylated surfactant protein C (SP-C)1-35, into a standard phospholipid (PL) mixture: B1-78, B1-25, C1-35, B1-78+C1-35, and B1-25+C1-35 surfactant preparations. Survanta was used as a positive control and PL and no treatment as a negative control. Lung function was assessed during a 2-h period using arterial blood gas and lung compliance measurements. Rats treated with B1-25+C1-35 surfactant and Survanta maintained the highest oxygenation and lung compliance values throughout the experiments. The surfactants could be ranked as B1-25+C1-35 surfactant and Survanta >B1-25 and B1-78+C1-35 surfactants >others. Because the N-terminal domain of surfactant protein B1-25 can improve inhibition resistance, it may be able to substitute for surfactant protein B in exogenous surfactant preparations.  (+info)

Structural requirements for palmitoylation of surfactant protein C precursor. (3/212)

Pulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated. Substitution of the transmembrane domain by an artificial transmembrane domain had no effect on palmitoylation. However, an inverse correlation was found between palmitoylation of proSP-C and the number of amino acids present between the cysteines and the transmembrane domain. Moreover, substitution by alanines of amino acids localized on the N-terminal side of the cysteines had drastic effects on palmitoylation, probably as a result of the removal of hydrophobic amino acids. These data, together with the observation that substitution by alanines of the amino acids localized between the cysteines and the transmembrane domain had no effect on palmitoylation, suggest that the palmitoylation of proSP-C depends not on specific sequence motifs, but more on the probability that the cysteine is in the vicinity of the membrane surface. This is probably determined not only by the number of amino acids between the cysteines and the transmembrane domain, but also by the hydrophobic interaction of the N-terminus with the membrane. This may also be the case for the palmitoylation of other transmembrane proteins.  (+info)

Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size. (4/212)

The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film.  (+info)

Palmitoylation and processing of the lipopeptide surfactant protein C. (5/212)

Pulmonary surfactant, a mixture of lipids and proteins, reduces the surface tension at the air-water interface of the lung alveoli by forming a surface active film. This way, it prevents alveoli from collapsing and facilitates the work of breathing. Surfactant protein C (SP-C) plays an important role in this surfactant function. SP-C is expressed as a proprotein (proSP-C), which becomes posttranslationally modified with palmitate and undergoes several rounds of proteolytical cleavage. This results in the formation of mature SP-C, which is stored in the lamellar bodies (LB) and finally secreted into the alveolar space. Recently, new insights into the sorting, processing and palmitoylation of proSP-C have been obtained by mutagenesis studies. Moreover, reports on the association of development of lung disease with SP-C deficiency have led to new insights into the importance of SP-C for proper surfactant homeostasis. In addition, new information has become available on the role of the palmitoyl chains of SP-C in surface activity. This review summarizes these recent developments in the processing and function of SP-C, with particular emphasis on the signals for and role of palmitoylation of SP-C.  (+info)

Effect of hydrophobic surfactant proteins SP-B and SP-C on phospholipid monolayers. Protein structure studied using 2D IR and beta correlation analysis. (6/212)

We have applied two-dimensional infrared (2D IR) and betanu correlation spectroscopy to in-situ IR spectroscopy of pulmonary surfactant proteins SP-B and SP-C in lipid-protein monolayers at the air-water interface. For both SP-B and SP-C, a statistical windowed autocorrelation method identified two separate surface pressure regions that contained maximum amide I intensity changes: 4-25 mN/m and 25-40 mN/m. For SP-C, 2D IR and betanu correlation analyses of these regions indicated that SP-C adopts a variety of secondary structure conformations, including alpha-helix, beta-sheet, and an intermolecular aggregation of extended beta-sheet structure. The main alpha-helix band split into two peaks at high surface pressures, indicative of two different helix conformations. At low surface pressures, all conformations of the SP-C molecule reacted identically to increasing surface pressure and reoriented in phase with each other. Above 25 mN/m, however, the increasing surface pressure selectively affected the coexisting protein conformations, leading to an independent reorientation of the protein conformations. The asynchronous 2D IR spectrum of SP-B showed the presence of two alpha-helix components, consistent with two separate populations of alpha-helix in SP-B-a hydrophobic fraction associated with the lipid chains and a hydrophilic fraction parallel to the membrane surface. The distribution of correlation intensity between the two alpha-helix cross peaks indicated that the more hydrophobic helix fraction predominates at low surface pressures whereas the more hydrophilic helix fraction predominates at high surface pressures. The different SP-B secondary structures reacted identically to increasing surface pressure, leading to a reorientation of all SP-B subunits in phase with one another.  (+info)

Hydrogen/deuterium exchange and aggregation of a polyvaline and a polyleucine alpha-helix investigated by matrix-assisted laser desorption ionization mass spectrometry. (7/212)

The membrane-associated pulmonary surfactant protein C (SP-C), containing a polyvaline alpha-helix, and a synthetic SP-C analogue with a polyleucine helix (SP-C(Leu)) were studied by hydrogen/deuterium exchange matrix-assisted laser desorption ionization (MALDI) mass spectrometry. SP-C, but not SP-C(Leu), formed abundant amyloid fibrils under experimental conditions. In CD(3)OD/D(2)O, 91:9 (v/v), containing 2 mM ammonium acetate, SP-C(Leu) and SP-C exchanged 40% of their exchangeable hydrogens within 1 min. This corresponds to exchange of labile side-chain hydrogen atoms, hydrogens on the N- and C-terminal heteroatoms, and amide hydrogen atoms in the unstructured N-terminal regions. After approximately 300 h, four exchangeable hydrogen atoms in SP-C(Leu) and 10 in SP-C remained unexchanged. During this time period the ion current corresponding to singly charged SP-C decreased to <10% of the initial value due to the formation of insoluble aggregates that are not detected by MALDI mass spectrometry. In contrast, the ion current for SP-C(Leu) was maintained over this time period, although the peptides were incubated together. In combination, hydrogen/deuterium exchange and aggregation data indicate that the polyleucine peptide refolds into a helix after opening, while the unfolded polyvaline peptide forms insoluble beta-sheet aggregates rather than refolding into a helix. The SP-C helix, but not the SP-C(Leu) helix, is thus in a metastable state, which may contribute to the recently observed tendency of SP-C and its precursor to misfold and aggregate in vivo.  (+info)

Fibrinolysis-inhibitory capacity of clot-embedded surfactant is enhanced by SP-B and SP-C. (8/212)

Incorporation of pulmonary surfactant into fibrin inhibits its plasmic degradation. In the present study we investigated the influence of surfactant proteins (SP)-A, SP-B, and SP-C on the fibrinolysis-inhibitory capacity of surfactant phospholipids. Plasmin-induced fibrinolysis was quantified by means of a (125)I-fibrin plate assay, and surfactant incorporation into polymerizing fibrin was analyzed by measuring the incorporation of (3)H-labeled L-alpha-dipalmitoylphosphatidylcholine into the insoluble clot material. Incorporation of a calf lung surfactant extract (Alveofact) and an organic extract of natural rabbit large surfactant aggregates (LSA) into a fibrin clot revealed a stronger inhibitory effect on plasmic cleavage of this clot than a synthetic phospholipid mixture (PLX) and unprocessed LSA. Reconstitution of PLX with SP-B and SP-C increased, whereas reconstitution with SP-A decreased, the fibrinolysis-inhibitory capacity of the phospholipids. The SP-B effect was paralleled by an increased incorporation of phospholipids into fibrin. We conclude that the inhibitory effect of surfactant incorporation into polymerizing fibrin on its susceptibility to plasmic cleavage is enhanced by SP-B and SP-C but reduced by SP-A. In the case of SP-B, increased phospholipid incorporation may underlie this finding.  (+info)