Treatment of diabetic patients; observations on the use of carbutamide and tolbutamide. (33/192)

Of a group of 32 patients with diabetes, 26 had a favorable modification of the disease in response to administration of butyl-sulfonyl-urea. All but one of the patients who had good response were past the age of 38. All diabetic patients included in this group were those with little or no tendency to ketosis after cessation of insulin administration. No toxic manifestations were noted except for a slight decrease in leukocytes in one case.  (+info)

Drugs affecting microtubule dynamics increase alpha-tubulin mRNA accumulation via transcription in Tetrahymena thermophila. (34/192)

In cultured mammalian cells, an increase in the amount of tubulin monomer due to treatment with a microtubule-depolymerizing agent results in a rapid decline in tubulin synthesis. This autoregulatory response is mediated through a posttranscriptional mechanism which decreases the stability of tubulin message with no change in transcriptional activity of tubulin genes. Conversely, treatment with a microtubule-polymerizing drug, such as taxol, results in a slight increase in the synthesis of tubulin. Surprisingly, we find that two microtubule-depolymerizing agents, colchicine and oryzalin, actually cause an increase in alpha-tubulin synthesis and alpha-tubulin message in starved Tetrahymena thermophila. This increase is paralleled by an increase in transcription of alpha-tubulin sequences measured by run-on transcription, while the half-life of tubulin message measured by decay in the presence of actinomycin D does not change appreciably. Treatment of starved cells with taxol also produces an increase in alpha-tubulin synthesis via an increase in message abundance due to an increase in transcription of the alpha-tubulin gene. These results indicate that tubulin synthesis in T. thermophila is regulated very differently than in cultured mammalian cells.  (+info)

An investigation of large inhibitors binding to phosphoglycerate kinase and their effect on anion activation. (35/192)

This study extends, to a series of larger anions, our earlier investigation of the interaction of the trypanocidal drug suramin and other small negatively charged molecules with yeast phosphoglycerate kinase. 1H-NMR structural studies of phosphoglycerate kinase in the presence of varying concentrations of these large molecules (designed to mimic, at one end, the anionic charge distribution in the substrate 3-phosphoglycerate, while possibly being able to interact across the cleft of the enzyme) including inositol 1,4,5-triphosphate, 4-amino-6-trichloroethenyl-1,3- benzenedisulphonamide, gallic acid and sulphasalazine are described. The anion activation and/or inhibition of the enzyme by these molecules are also reported. Evidence that binding to the general anion site in the 'basic patch' region of the protein may be responsible for either the activating or inhibiting effects, while binding at the hydrophobic (catalytic) site leads to inhibition only is presented. A reaction scheme which explains these observations is given.  (+info)

Phase I clinical and pharmacological study of chloroquinoxaline sulfonamide. (36/192)

Chloroquinoxaline sulfonamide (CQS) is a halogenated heterocyclic sulfanilamide identified by the in vitro human tumor colony-forming assay as an active agent in a variety of human solid tumors. In this phase I study, 182 courses of CQS were administered intravenously every 28 days to 88 patients at doses ranging from 18 to 4870 mg/m2. Hypoglycemia associated with hyperinsulinemia was the dose-limiting adverse effect at 4870 mg/m2. Supraventricular tachyarrhythmias were observed at doses > 4000 mg/m2. Less common reactions included infusion site phlebitis, nausea, anemia, alopecia, perioral numbness, and diarrhea. Cumulative toxicity was not observed. Minor objective antitumor responses were noted in 7 patients; 6 of the 7 responses occurred in patients with non-small cell lung cancer. Results of pharmacokinetic studies were consistent with the preclinical observations that CQS is highly bound to plasma protein. Plasma elimination followed a two-compartment model; the mean t 1/2 alpha was 2.7 +/- 0.3 h and the t 1/2 beta was 52 +/- 6 h (+/- SE). The total body clearance and the volume of distribution at steady state of CQS both increased with the dose (distribution at steady state, 3.7-10.5 liter/m2; total body clearance, 53-264 ml/h/m2 for doses of 18-4060 mg/m2) and may reflect saturation of the protein binding and "free" drug clearance. Although inactive against common animal tumors in preclinical screening systems both in vitro and in vivo, CQS has demonstrated definite activity in the human tumor stem cell colony-forming assays, as well as modest anticancer activity in this phase I study in patients with advanced solid tumors. The pharmacokinetic results and the limiting effect of transient hypoglycemia suggest that considerably higher cumulative doses of CQS could be administered using a more frequent dosing schedule.  (+info)

The Na-K-Cl cotransport protein of shark rectal gland. I. Development of monoclonal antibodies, immunoaffinity purification, and partial biochemical characterization. (37/192)

The Na-K-Cl cotransporter mediates the coupled transport of Na, K, and Cl across the plasma membrane of many animal cell membranes. It is inhibited by loop diuretics such as furosemide, bumetanide, and benzmetanide. We have developed a panel of monoclonal antibodies directed against the 195-kDa shark rectal gland Na-K-Cl cotransport protein. Four representative antibodies (J3, J4, J7, and J25), each of which recognizes a discrete structural domain, were selected for detailed characterization. When a radiolabeled loop diuretic is bound to the cotransporter prior to solubilization, each antibody immunoprecipitates the same diuretic-protein complex. Of the four antibodies, J4 favors the native protein over the denatured one and does not bind well to proteolytic fragments; in contrast, J7 recognizes the cotransporter only after it has been solubilized. J3, J7, and J25 each recognize a unique ensemble of proteolytic fragments of the 195-kDa protein; analysis of the patterns of recognition has yielded a tentative assignment of the approximate location of the epitopes within the peptide. When the cotransport protein is treated with N-glycanase to remove N-linked oligosaccharides, its apparent mass decreases to approximately 135 kDa. The deglycosylated form is recognized by each of the antibodies except J25; this suggests that the J25 epitope is within the oligosaccharide component or in a peptide domain whose folding is disturbed by carbohydrate removal. An immunoaffinity matrix constructed with the J4 antibody permits single-step purification of the 195-kDa protein; other proteins copurify with the large glycoprotein, but none of these appear to be subunits of a stoichiometric complex. The amino acid sequence of four fragments of the 195-kDa cotransport protein is reported. Immunofluorescence and immunoelectron microscopy demonstrates, in agreement with physiological evidence, that the 195-kDa protein is distributed along the basolateral membrane and excluded from the apical membrane of the rectal gland secretory cell.  (+info)

Selective antimicrotubule activity of N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. (38/192)

Analogs of the antimitotic herbicide oryzalin (3,5-dinitro-N4,N4-di-n-propylsulfanilamide) were recently prepared that were more potent in vitro than the parent compound against the kinetoplastid parasite Leishmania donovani (Bioorg Med Chem Lett 12:2395-2398, 2002). In the present work, we show that the most active molecule in the group, N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5), is a potent, selective antimitotic agent against kinetoplastid parasites. GB-II-5 possesses IC50 values of 0.41 and 0.73 microM in vitro against two strains of the related parasite Trypanosoma brucei but is much less toxic to J774 murine macrophages and PC3 prostate cancer cells, exhibiting IC50 values of 29 and 35 microM against these lines, respectively. Selectivity is also observed for GB-II-5 with purified leishmanial and mammalian tubulin. The assembly of 15 microM leishmanial tubulin is completely inhibited by 10 microM GB-II-5, whereas 40 microM GB-II-5 inhibits the assembly of 15 microM porcine brain tubulin by only 17%. In cultured L. donovani and T. brucei, treatment with 5 and 0.5 microM GB-II-5, respectively, causes a striking increase in the fraction of G2M cells compared with control. Given the potency and selectivity of this agent against kinetoplastid tubulin, GB-II-5 emerges as an exciting new antitrypanosomal and antileishmanial lead compound.  (+info)

Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. (39/192)

Although seed plants have gamma-tubulin, a ubiquitous component of centrosomes associated with microtubule nucleation in algal and animal cells, they do not have discrete microtubule organizing centers (MTOCs) comparable to animal centrosomes, and the organization of microtubule arrays in plants has remained enigmatic. Spindle development in basal land plants has revealed a surprising variety of MTOCs that may represent milestones in the evolution of the typical diffuse acentrosomal plant spindle. We have isolated and characterized the gamma-tubulin gene from a liverwort, one of the extant basal land plants. Sequence similarity to the gamma-tubulin gene of higher plants suggests that the gamma-tubulin gene is highly conserved in land plants. The G9 antibody to fission yeast gamma-tubulin recognized a single band of 55 kD in immunoblots from bryophytes. Immunohistochemistry with the G9 antibody clearly documented the association of gamma-tubulin with various MTOC sites in basal land plants (e.g., discrete centrosomes with and without centrioles and the plastid surface in monoplastidic meiosis of bryophytes). Changes in the distribution of gamma-tubulin occur in a cell cycle-specific manner during monoplastidic meiosis in the liverwort Dumortiera hirsuta. gamma-Tubulin changes its localization from the plastid surface in prophase I to the spindle, from the spindle to phragmoplasts and the nuclear envelope in telophase I, and back to the plastid surfaces in prophase II. In vitro experiments show that gamma-tubulin is detectable on the surface of isolated plastids and nuclei of D. hirsuta, and microtubules can be repolymerized from the isolated plastids. gamma-Tubulin localization patterns on plastid and nuclear surfaces are not affected by the destruction of microtubules by oryzalin. We conclude that gamma-tubulin is a highly conserved protein associated with microtubule nucleation in basal land plants and that it has a cell cycle-dependent distribution essential for the orderly succession of microtubule arrays.  (+info)

In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. (40/192)

The aerial parts of the plant are generated by groups of rapidly dividing cells called shoot apical meristems. To analyze cell behavior in these structures, we developed a technique to visualize living shoot apical meristems using the confocal microscope. This method, combined with green fluorescent protein marker lines and vital stains, allows us to follow the dynamics of cell proliferation, cell expansion, and cell differentiation at the shoot apex. Using this approach, the effects of several mitotic drugs on meristem development were studied. Oryzalin (depolymerizing microtubules) very rapidly caused cell division arrest. Nevertheless, both cell expansion and cell differentiation proceeded in the treated meristems. Interestingly, DNA synthesis was not blocked, and the meristematic cells went through several rounds of endoreduplication in the presence of the drug. We next treated the meristems with two inhibitors of DNA synthesis, aphidicolin and hydroxyurea. In this case, cell growth and, later, cell differentiation were inhibited, suggesting an important role for DNA synthesis in growth and patterning.  (+info)