International Conference on Advances in Radiation Oncology (ICARO): outcomes of an IAEA meeting. (9/20)

 (+info)

Isodose curve mappings measured while undergoing rotation for quality assurance testing of a 137Cs irradiator. (10/20)

 (+info)

Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry. (11/20)

 (+info)

Accelerator science in medical physics. (12/20)

 (+info)

The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. (13/20)

 (+info)

Guidance on the use of handheld survey meters for radiological triage: time-dependent detector count rates corresponding to 50, 250, and 500 mSV effective dose for adult males and adult females. (14/20)

In June 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma cameras in nuclear medicine departments operated as makeshift wholebody counters. Guidance on this approach is currently available from the CDC. This approach would be feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facility had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however,substantially larger numbers of individuals (100's to 1,000's) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated--the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (< 50, 50-250, 250-500,and >500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with 241Am, 60Cs, 137Cs, 131I, or 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detector types, positions, and screening distances.Measured net count rates can be compared to these values, and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening and that the measurements be conducted in a low background, and possibly mobile, facility positioned at the triage location. Net count rate data are provided in both tabular and graphical format within a series of eight handbooks available at the CDC website (http://www.bt.cdc.gov/radiation/clinicians/evaluation).  (+info)

Geographical distribution of radiotherapy resources in Japan: investigating the inequitable distribution of human resources by using the Gini coefficient. (15/20)

This is a pilot study that aims to elucidate regional disparities in the distribution of medical resources in Japan. For this purpose, we employed the Gini coefficient (GC) in order to analyze the distribution of radiotherapy resources, which are allocated to each prefecture in Japan depending on the size of its population or physical area. Our study used data obtained from the 2005 and 2007 national surveys on the structure of radiation oncology in Japan, conducted by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO). Our analysis showed that the regional disparities regarding the radiation oncologists and radiotherapy technologists were small, and concluded that such resources were almost equitably distributed. However, medical physicists are inequitably distributed. Thus, policymakers should create and implement measures to train and retain medical physicists in areas with limited radiotherapy resources. Further, almost 26% of the secondary medical service areas lacked radiotherapy institutions. We attribute this observation to the existence of tertiary medical service areas, and almost all of prefectures face a shortage of such resources. Therefore, patients' accessibility to these resources in such areas should be improved.  (+info)

Projecting the radiation oncology workforce in Australia. (16/20)

Research on radiation oncologists has indicated that there is a shortage in supply of specialist workers in this field internationally, and also within Australia. However, there are no current estimates as to what the future Australian radiotherapy workforce will look like. This paper aims to review the current status and capacity of the three main disciplines that make up the radiation oncology workforce in Australia and project the workforce supply and demand for 2014 and 2019. Using data on the workforce from a survey of all radiotherapy facilities operating in Australia in 2008 a workforce model was constructed. This study found that there will be a future shortfall of radiation oncologists, radiation therapists and radiation oncology medical physicists working in radiation oncology treatment. By 2014 there will be 109 fewer radiation oncologists than what will be demanded, and by 2019 this figure will increase to a shortfall of 155 radiation oncologists. There was a projected shortfall of 612 radiation therapists by 2014, with this figure slightly decreasing to a shortfall of 593 radiation therapists in 2019. In 2014, there was projected to be a deficit of 104 radiation oncology medical physicists with a persisting shortfall of 78 in 2019. This future projected shortage highlights the need for radiation oncology workforce planning.  (+info)