Pseudo-steroid resistant asthma. (1/491)

BACKGROUND: Steroid resistant asthma (SRA) represents a small subgroup of those patients who have asthma and who are difficult to manage. Two patients with apparent SRA are described, and 12 additional cases who were admitted to the same hospital are reviewed. METHODS: The subjects were selected from a tertiary hospital setting by review of all asthma patients admitted over a two year period. Subjects were defined as those who failed to respond to high doses of bronchodilators and oral glucocorticosteroids, as judged by subjective assessment, audible wheeze on examination, and serial peak flow measurements. RESULTS: In 11 of the 14 patients identified there was little to substantiate the diagnosis of severe or steroid resistant asthma apart from symptoms and upper respiratory wheeze. Useful tests to differentiate this group of patients from those with severe asthma appear to be: the inability to perform reproducible forced expiratory manoeuvres, normal airway resistance, and a concentration of histamine causing a 20% fall in the forced expiratory volume (FEV1) being within the range for normal subjects (PC20). Of the 14 subjects, four were health care staff and two reported childhood sexual abuse. CONCLUSION: Such patients are important to identify as they require supportive treatment which should not consist of high doses of glucocorticosteroids and beta2 adrenergic agonists. Diagnoses other than asthma, such as gastro-oesophageal reflux, hyperventilation, vocal cord dysfunction and sleep apnoea, should be sought as these may be a cause of glucocorticosteroid treatment failure and pseudo-SRA, and may respond to alternative treatment.  (+info)

Atrophy of the posterior cricoarytenoid muscle as an indicator of recurrent laryngeal nerve palsy. (2/491)

BACKGROUND AND PURPOSE: The posterior cricoarytenoid (PCA) muscle is one of the intrinsic muscles of the larynx innervated by the recurrent laryngeal nerve. As such, recurrent laryngeal nerve palsy should not only result in paralysis of the true vocal cord or thyroarytenoid muscle but also in a similar change in the PCA muscle. The ability of CT and MR imaging to depict denervation atrophy in the PCA muscle in patients with recurrent laryngeal nerve palsy was evaluated. METHODS: Two investigators reviewed the CT and/or MR studies of 20 patients with a clinical history of vocal cord paralysis. The appearance of the PCA muscle was given a rating of 0, 1, 2, 3, or 4, with 0 being definitely normal and 4 being definitely abnormal or atrophic. Each study was also reviewed for the presence or absence of other features of vocal cord paralysis: thyroarytenoid muscle atrophy, anteromedial deviation of the arytenoid cartilage, an enlarged piriform sinus and laryngeal ventricle, and a paramedian cord. RESULTS: Atrophy of the PCA muscle was shown unequivocally in 65% of the cases and was most likely present in an additional 20%. The frequency with which other features of vocal cord paralysis were seen was as follows: thyroarytenoid atrophy, 95%; anteromedial deviation of the arytenoid cartilage, 70%; enlarged piriform sinus, 100%; enlarged laryngeal ventricle, 90%; and a paramedian cord, 100%. CONCLUSION: Atrophy of the PCA muscle may be commonly documented on CT and MR studies in patients with recurrent laryngeal nerve palsy and vocal cord paralysis, and therefore should be part of the constellation of imaging features of vocal cord paralysis. This finding is particularly useful when other imaging findings of vocal cord paralysis are absent or equivocal.  (+info)

The neuromuscular control of birdsong. (3/491)

Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during expiration and each syllable is typically followed by a small inspiration, except at the highest syllable repetition rates when a pattern of pulsatile expiration is used. Both expiration and inspiration are active processes. The oscine vocal organ, the syrinx, contains two separate sound sources at the cranial end of each bronchus, each with independent motor control. Dorsal syringeal muscles regulate the timing of phonation by adducting the sound-generating labia into the air stream. Ventral syringeal muscles have an important role in determining the fundamental frequency of the sound. Different species use the two sides of their vocal organ in different ways to achieve the particular acoustic properties of their song. Reversible paralysis of the vocal organ during song learning in young birds reveals that motor practice is particularly important in late plastic song around the time of song crystallization in order for normal adult song to develop. Even in adult crystallized song, expiratory muscles use sensory feedback to make compensatory adjustments to perturbations of respiratory pressure. The stereotyped beak movements that accompany song appear to have a role in suppressing harmonics, particularly at low frequencies.  (+info)

Hunter's syndrome and associated sleep apnoea cured by CPAP and surgery. (4/491)

A 42-yr-old male with Hunter's syndrome presented with severe obstructive sleep apnoea syndrome (OSAS) and daytime respiratory failure. Continuous positive airway pressure (CPAP) therapy was initially ineffective and produced acute respiratory distress. Extensive Hunter's disease infiltration of the upper airway with a myxoma was confirmed. Following surgery to remove the myxoma at the level of the vocal cords, CPAP therapy was highly effective and well tolerated. This report demonstrates the necessity of evaluating fully the upper airway in patients with unusual variants of OSAS, particularly where the disease is not adequately controlled by CPAP.  (+info)

Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds; a possible specialization for speech. (5/491)

Most of the sounds of human speech are produced by vibration of the vocal folds, yet the biomechanics and control of these vibrations are poorly understood. In this study the muscle within the vocal fold, the thyroarytenoid muscle (TA), was examined for the presence and distribution of slow tonic muscle fibers (STF), a rare muscle fiber type with unique contraction properties. Nine human TAs were frozen and serially sectioned in the frontal plane. The presence and distribution pattern of STF in each TA were examined by immunofluorescence microscopy using the monoclonal antibodies (mAb) ALD-19 and ALD-58 which react with the slow tonic myosin heavy chain (MyHC) isoform. In addition, TA muscle samples from adjacent frozen sections were also examined for slow tonic MyHC isoform by electrophoretic immunoblotting. STF were detected in all nine TAs and the presence of slow tonic MyHC isoform was confirmed in the immunoblots. The STF were distributed predominantly in the medial aspect of the TA, a distinct muscle compartment called the vocalis which is the vibrating part of the vocal fold. STF do not contract with a twitch like most muscle fibers, instead, their contractions are prolonged, stable, precisely controlled, and fatigue resistant. The human voice is characterized by a stable sound with a wide frequency spectrum that can be precisely modulated and the STF may contribute to this ability. At present, the evidence suggests that STF are not presented in the vocal folds of other mammals (including other primates), therefore STF may be a unique human specialization for speech.  (+info)

Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). (6/491)

The physical nature of the vocal tract results in the production of formants during vocalisation. In some animals (including humans), receivers can derive information (such as body size) about sender characteristics on the basis of formant characteristics. Domestication and selective breeding have resulted in a high variability in head size and shape in the dog (Canis familiaris), suggesting that there might be large differences in the vocal tract length, which could cause formant behaviour to affect interbreed communication. Lateral radiographs were made of dogs from several breeds ranging in size from a Yorkshire terrier (2.5 kg) to a German shepherd (50 kg) and were used to measure vocal tract length. In addition, we recorded an acoustic signal (growling) from some dogs. Significant correlations were found between vocal tract length, body mass and formant dispersion, suggesting that formant dispersion can deliver information about the body size of the vocalizer. Because of the low correlation between vocal tract length and the first formant, we predict a non-uniform vocal tract shape.  (+info)

Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. (7/491)

Voice onset time (VOT) is an important parameter of speech that denotes the time interval between consonant onset and the onset of low-frequency periodicity generated by rhythmic vocal cord vibration. Voiced stop consonants (/b/, /g/, and /d/) in syllable initial position are characterized by short VOTs, whereas unvoiced stop consonants (/p/, /k/, and t/) contain prolonged VOTs. As the VOT is increased in incremental steps, perception rapidly changes from a voiced stop consonant to an unvoiced consonant at an interval of 20-40 ms. This abrupt change in consonant identification is an example of categorical speech perception and is a central feature of phonetic discrimination. This study tested the hypothesis that VOT is represented within auditory cortex by transient responses time-locked to consonant and voicing onset. Auditory evoked potentials (AEPs) elicited by stop consonant-vowel (CV) syllables were recorded directly from Heschl's gyrus, the planum temporale, and the superior temporal gyrus in three patients undergoing evaluation for surgical remediation of medically intractable epilepsy. Voiced CV syllables elicited a triphasic sequence of field potentials within Heschl's gyrus. AEPs evoked by unvoiced CV syllables contained additional response components time-locked to voicing onset. Syllables with a VOT of 40, 60, or 80 ms evoked components time-locked to consonant release and voicing onset. In contrast, the syllable with a VOT of 20 ms evoked a markedly diminished response to voicing onset and elicited an AEP very similar in morphology to that evoked by the syllable with a 0-ms VOT. Similar response features were observed in the AEPs evoked by click trains. In this case, there was a marked decrease in amplitude of the transient response to the second click in trains with interpulse intervals of 20-25 ms. Speech-evoked AEPs recorded from the posterior superior temporal gyrus lateral to Heschl's gyrus displayed comparable response features, whereas field potentials recorded from three locations in the planum temporale did not contain components time-locked to voicing onset. This study demonstrates that VOT at least partially is represented in primary and specific secondary auditory cortical fields by synchronized activity time-locked to consonant release and voicing onset. Furthermore, AEPs exhibit features that may facilitate categorical perception of stop consonants, and these response patterns appear to be based on temporal processing limitations within auditory cortex. Demonstrations of similar speech-evoked response patterns in animals support a role for these experimental models in clarifying selected features of speech encoding.  (+info)

Effects of ageing on the insertion zones of the human vocal fold. (8/491)

The vocal ligaments insert at the anterior and posterior commissures of the larynx. These structures fulfil biomechanical functions, balancing the different elastic moduli of tendon, cartilage or bone and undergo age-related changes that may be responsible for voice changes with increasing age. The aim of this study was to analyse the insertion structures of the vocal ligaments by means of macroscopic, histological, immunohistochemical and electron-microscopic methods and to draw conclusions from age-related structural changes on a functional basis. Investigations were carried out on the larynges of 22 males and 15 females (aged 1-95 y). In adolescence, the insertion zone of the vocal ligament tendon, a dense network of connective tissue rich in sulphated glycosaminoglycans at the thyroid cartilage, is characterised by a layer between tendon and cartilage comparable to fibrocartilage. The insertion zone lacks a perichondrium. Collagen fibrils of the vocal ligament tendon penetrate directly into the thyroid cartilage. In the insertion area, the chondrocytes are surrounded by collagen fibrils, which show positive reactivity to antibodies against type I and type III collagen. Sulphated glycosaminoglycans are integrated between the collagen fibrils. In the area of the posterior glottis, elastic cartilage rests like a cap on the hyaline base of the arytenoid cartilage. There is no distinctive border between the structures. With increasing age, ossification of the laryngeal skeleton occurs, involving hyaline cartilage at the posterior glottis and hyaline and fibrocartilage at the anterior commissure. At the same time, a loss or sulphated glycosaminoglycans is observed inside the vocal ligament tendon. Advanced ossification of the laryngeal skeleton, particularly in the area of the commissures, an increasing loss of glycosaminoglycans in the vocal ligament tendon and changes in the elastic tissue reduce the elastic modulus between tendon, cartilage and bone, thus 'stiffening' the insertion zones, which could be one factor among others favouring voice changes with advancing age.  (+info)