Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(-)-cotransporter abundance: role of aldosterone. (41/759)

Chronic infusion of loop diuretics into animals induces structural and functional changes in the distal nephron. These changes include increases in the activity of the thiazide-sensitive Na(+)/Cl(-)-cotransporter (NCC). The NCC was recently demonstrated to be an aldosterone-induced protein. These experiments were designed to test the hypotheses that chronic loop diuretic infusion, with replacement of NaCl losses, increases NCC protein abundance and that this effect results, in part, from stimulation by aldosterone. Sprague-Dawley rats received vehicle (group 1), furosemide (22 mg/100 g body wt per d) (group 2), or furosemide plus spironolactone (22 and 20 mg/100 g body wt per d, respectively) (group 3). Urine output was higher for groups 2 and 3 than for group 1 (151 +/- 32, 149 +/- 24, and 12 +/- 4 ml, respectively; P < 0.0001). Immunoblot analysis of NCC protein demonstrated that loop diuretics increased NCC protein abundance by nearly 100% (from 2562 +/- 30 to 5248 +/- 151 arbitrary units, P < 0.01). Spironolactone decreased NCC protein abundance by 66% (to 3532 +/- 113 units), compared with the furosemide-treated group (P < 0.005). Northern blot analysis of NCC mRNA demonstrated no significant effect of furosemide (NCC/glyceraldehyde-3-phosphate dehydrogenase ratios: group 1, 0.6 +/- 0.12; group 2, 0.5 +/- 0.05; P > 0.05, NS) These results indicate that increased NCC activity during chronic loop diuretic infusion is associated with increases in NCC protein abundance. A portion of the furosemide effect can be prevented by blockade of mineralocorticoid receptors.  (+info)

Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. (42/759)

We investigated whether acute stressors regulate functional properties of the hippocampal mineralocorticoid receptor (MR), which acts inhibitory on hypothalamic-pituitary-adrenocortical activity. Exposure of rats to forced swimming or novelty evoked a significant rise in density of MR immunoreactivity in all hippocampal subfields after 24 hr, whereas exposure to a cold environment was ineffective. Time course analysis revealed that the effect of forced swimming on MR peaked at 24 hr and returned to control levels between 24 and 48 hr. In pyramidal neurons of CA2 and CA3, marked rises were already observed after 8 hr. Radioligand binding assays showed that corticotropin-releasing hormone (CRH) injected intracerebroventricularly into adrenalectomized rats also produced a rise in hippocampal MR levels; an effect for which the presence of corticosterone, but not dexamethasone, at the time of injection was a prerequisite. Moreover, pretreatment with the CRH receptor antagonist (d-Phe(12),Nle(21,38),alpha-Me-Leu(37))-CRH(12-41) blocked the effect of forced swimming on hippocampal MR levels. To investigate whether the rise in MR levels had any functional consequences for HPA regulation, 24 hr after forced swimming, a challenge test with the MR antagonist RU 28318 was conducted. The forced swimming exposed rats showed an enhanced MR-mediated inhibition of HPA activity. This study identifies CRH as an important regulator of MR, a pathway with marked consequence for HPA axis regulation. We conclude that the interaction between CRH and MR presents a novel mechanism involved in the adaptation of the brain to psychologically stressful events.  (+info)

Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. (43/759)

Fibrosis leads to chronic impairment of cardiac and renal function and thus reversal of existing fibrosis may improve function and survival. This project has determined whether pirfenidone, a new antifibrotic compound, and spironolactone, an aldosterone antagonist, reverse both deposition of the major extracellular matrix proteins, collagen and fibronectin, and functional changes in the streptozotocin(STZ)-diabetic rat. Streptozotocin (65 mg kg(-1) i.v.)-treated rats given pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; approximately 200 mg kg(-1) day(-1) as 0.2 - 2g 1(-1) drinking water) or spironolactone (50 mg kg(-1) day(-1) s.c.) for 4 weeks starting 4 weeks after STZ showed no attenuation of the increased blood glucose concentrations and increased food and water intakes which characterize diabetes in this model. STZ-treatment increased perivascular and interstitial collagen deposition in the left ventricle and kidney, and surrounding the aorta. Cardiac, renal and plasma fibronectin concentrations increased in STZ-diabetic rats. Passive diastolic stiffness increased in isolated hearts from STZ-diabetic rats. Both pirfenidone and spironolactone treatment attenuated these increases without normalizing the decreased +dP/dt(max) of STZ-diabetic hearts. Left ventricular papillary muscles from STZ-treated rats showed decreased maximal positive inotropic responses to noradrenaline, EMD 57033 (calcium sensitizer) and calcium chloride; this was not reversed by pirfenidone or spironolactone treatment. STZ-treatment transiently decreased GFR and urine flow rates in isolated perfused kidneys; pirfenidone but not spironolactone prevented the return to control values. Thus, short-term pirfenidone and spironolactone treatment reversed cardiac and renal fibrosis and attenuated the increased diastolic stiffness without normalizing cardiac contractility or renal function in STZ-diabetic rats.  (+info)

Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. (44/759)

BACKGROUND: The cardiac renin-angiotensin-aldosterone system is activated in failing hearts in proportion to the severity of the disease. We hypothesized that a positive feedback mechanism might exist within this system and contribute to the progression of the heart failure. Methods and Results-- To test this hypothesis, we examined whether angiotensin II or aldosterone induces the expression of angiotensin-converting-enzyme (ACE) mRNA in cultured neonatal rat ventricular cardiocytes. Expression of ACE mRNA was detected and quantified using real-time reverse transcription-polymerase chain reaction. Exposure to angiotensin II (10(-5) mol/L) for 24 hours had no significant effect on the expression of ACE mRNA (0.7+/-0.5-fold versus control, P=NS), but similar treatment with aldosterone (10(-5) mol/L) induced a 23.3+/-7.9-fold increase (P<0.01) in ACE mRNA expression. The effect of aldosterone was both time- (maximal effect, 24 hours) and dose-dependent (EC(50), 4x10(-7) mol/L), and it was significantly (P<0.01) inhibited by spironolactone, a specific mineralocorticoid receptor antagonist. CONCLUSIONS: Aldosterone upregulates ACE mRNA expression, which is blocked by spironolactone in neonatal rat cardiocytes. Thus, spironolactone may suppress the progression of heart failure by blocking the effects of aldosterone and angiotensin II.  (+info)

Effect of a selective aldosterone receptor antagonist in myocardial infarction. (45/759)

Myocardial infarction (MI) initiates adaptive tissue remodeling, which is essential for heart function (such as infarct healing) but is also important for maladaptive remodeling (for example, reactive fibrosis and left ventricular dilation). The effect of aldosterone receptor antagonism on these processes was evaluated in Sprague-Dawley rats using eplerenone, a selective aldosterone receptor antagonist. Infarct healing and left ventricular remodeling were evaluated at 3, 7, and 28 days after MI by determination of the diastolic pressure-volume relationship of the left ventricle, the infarct-thinning ratio, and the collagen-volume fraction. Eplerenone did not affect reparative collagen deposition as was evidenced by a similar collagen volume fraction in the infarcted myocardium between eplerenone and vehicle-treated groups at 7 and 28 days post-MI. In addition, the thinning ratio, which is an index of infarct expansion, was comparable between the eplerenone and vehicle-treated animals at 7 and 28 days post-MI. A protective effect of eplerenone was demonstrated at 28 days post-MI, where reactive fibrosis in the viable myocardium was reduced in eplerenone-treated animals compared with vehicle-treated animals. Thus aldosterone receptor antagonism does not retard infarct healing but rather protects against maladaptive responses after MI.  (+info)

Assay and properties of 18-hydroxylation of endogenous and exogenous corticosterone in rat adrenals. Evidence for heterogeneity of 18-hydroxylase activity. (46/759)

A mass fragmentographic technique for assay of 18-hydroxylation of labeled (exogenous) and unlabeled (endogenous) corticosterone in adrenal mitochondria and in reconstituted cytochrome P-450 systems has been developed. An extract of an incubation of [14-14C]corticosterone is subjected both to thin-layer radiochromatography and to mass fragmentography (as O-methyloxime-trimethylsilyl ether derivative). In the latter procedure the ions at m/e 605 and 607 (specific for the derivatives of unlabeled and labeled 18-hydroxycorticosterone, respectively), at m/e 591 and 593 (specific for the derivatives of unlabeled labeled aldosterone, respectively) and at m/e 548 and 550 (specific for the derivatives of unlabeled and labeled corticosterone, respectively) were followed through the gas-liquid chromatography. From the ratio between the peaks obtained in the mass fragmentography and from the percentage conversion of [4-14C]corticosterone obtained in the thin-layer radiochromatography, the amount of endogenous and exogenous 18-hydroxycorticosterone and aldosterone could be calculated. The effects of time, enzyme, and substrate concentration of 18-hydroxylation were studied and optimal conditions for assay were determined. Under most conditions, the ratio between labeled and unlabeled 18-hydroxylated products was about constant, indicating that labeled and unlabeled corticosterone were not in equilibrium. It was ascertained that the 18-hydroxycorticosterone and aldosterone formed in the incubations were derived from corticosterone. [4-14C]18-Hydroxydeoxycorticosterone was not converted into aldosterone or 18-hydroxycorticosterone. In vitro studies with different 18-hydroxylase inhibitors (spironolactone, canrenone, and canrenoate-K) and studies with rats pretreated with KCl in drinking fluid suggest that 18-hydroxylation of corticosterone is catalyzed by an enzyme system different from that catalyzing 18-hydroxylation of deoxycorticosterone.  (+info)

Eplerenone suppresses constrictive remodeling and collagen accumulation after angioplasty in porcine coronary arteries. (47/759)

BACKGROUND: Coronary artery angioplasty triggers healing that causes constrictive remodeling. Because collagen accumulation correlates with constrictive remodeling and aldosterone has been implicated in collagen accumulation, we examined how aldosterone and the mineralocorticoid receptor antagonists spironolactone and eplerenone affect remodeling and collagen in porcine coronary and iliac arteries after angioplasty. METHODS AND RESULTS: Twenty-four pigs were allocated into 4 treatment groups: oral eplerenone (100 mg/d), oral spironolactone (200 mg/d), subcutaneous aldosterone (400 microgram/d), or no treatment. Twenty-eight days after angioplasty of the coronary arteries, eplerenone increased total vessel area by 30% (P<0.05) and luminal area by nearly 60% (P<0.05) compared with the no-treatment group, without affecting neointima size. These effects were accompanied by a 65% reduction in neointimal and medial collagen density (both P<0.05). Spironolactone was less effective, and aldosterone tended to exert opposite effects on coronary artery structure after angioplasty. These effects were not observed in angioplastied iliac arteries. CONCLUSIONS: Eplerenone attenuates constrictive remodeling after coronary artery angioplasty by mechanisms involving reduction in collagen accumulation, which thus appears to be an important contributor to constrictive remodeling of angioplastied coronary arteries.  (+info)

Two cases of pseudoaldosteronism (Liddle's syndrome) in siblings. (48/759)

Two cases of Liddle's syndrome were found in a brother and sister. Both showed typical hypokalemic hypertension without hyperaldosteronism. These cases showed similar responses in various pharmacological tests and their symptoms of hypokalemic and hypertension were relieved by triamterene. And in a family survey, the father appeared to be affected. This seems to be the first report on this syndrome in Japan.  (+info)