Fast repairing of oxidized OH radical adducts of dAMP and dGMP by phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. (1/35)

AIM: To investigate the antioxidative activity of the constituents of the roots of Scrophularia ningpoensis (Chinese name: Xuanshen). METHODS: The main compounds from the roots of Scrophularia ningpoensis were isolated and identified by chromatography and FABMS, NMR etc. Using the techniques of pulse radiolysis, the electron transfers from iridoid glycosides (IG) or phenylpropanoid glycosides (PG) to oxidized OH radical adducts of 2'-deoxyadenosine-5'-monophosphate acid (dAMP) or 2'-deoxyguanosine-5'-monophosphate acid (dGMP) were observed. RESULTS: Two IG: harpagoside and harpagide, two PG: angoroside C and acteoside were obtained as the main hydrophilic constituents of the plant. At 0.1 mmol/L concentration, angoroside C and acteoside were able to repair the oxidized OH adducts dAMP and dGMP significantly. However, harpagoside and harpagide had no such effect. The electron transfer rate constants of angoroside C with dAMP and dGMP were 4.2 x 10(8) and 10.3 x 10(8) L.mol-1.s-1; the electron transfer rate constants of acteoside with dAMP and dGMP were 5.3 x 10(8) and 20.2 x 10(8) L.mol-1.s-1. CONCLUSION: PG from Scrophularia ningpoensis have a potent antioxidative activity for reducing of the oxidized OH adducts of dAMP and dGMP.  (+info)

De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in aerial and underground parts of in vitro propagated and wild plants by HPLC. (2/35)

A protocol for de novo regeneration and rapid micropropagation of Scrophularia yoshimurae (Scrophulariaceae) has been developed. Multiple shoot development was achieved by culturing the shoot-tip, leaf-base, stem-node and stem-internode explants on Murashige and Skoog (MS) medium supplemented with 4.44 microM N6-benzyladenine (BA) and 1.07 microM alpha-naphthaleneacetic acid (NAA). Stem-node and shoot-tip explants showed the highest response (100%) followed by stem-internode (74.4%) and leaf-base (7.7%) explants. The shoots were multiplied by subculturing on the same medium used for shoot induction. Shoots were rooted on growth regulator-free MS basal medium and the plantlets were transplanted to soil and acclimatized in the growth chamber. The content of harpagoside, a quantitatively predominant iridoid glycoside, in different plant material was determined by high performance liquid chromatography (HPLC). The analysis revealed that the content of harpagoside in the aerial and underground parts of S. yoshimurae was significantly higher than the marketed crude drug (underground parts of Scrophularia ningpoensis).  (+info)

Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. (3/35)

Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that interact with SP (SIPs) and with its homologs from other species: a NIMA-like kinase (SPAK), a bZIP factor, a novel 10-kD protein, and 14-3-3 isoforms. SPAK, by analogy with Raf1, has two potential binding sites for 14-3-3 proteins, one of which is shared with SP. Surprisingly, overexpression of 14-3-3 proteins partially ameliorates the effect of the sp mutation. Analysis of the binding potential of chosen mutant SP variants, in relation to conformational features known to be conserved in this new family of regulatory proteins, suggests that associations with other proteins are required for the biological function of SP and that ligand binding and protein-protein association domains of SP may be separated. We suggest that CETS genes encode a family of modulator proteins with the potential to interact with a variety of signaling proteins in a manner analogous to that of 14-3-3 proteins.  (+info)

Antirrhinum majus microspore maturation and transient transformation in vitro. (4/35)

The male gametophyte of higher plants represents an excellent system to study gene regulation, cell fate determination and cellular differentiation in plants because of its relative simplicity compared to the sporophyte and its accessibility for cytological and molecular analysis. Unicellular plant microspores are single haploid cells, which can be isolated in large amounts at a defined developmental stage. Microspores cultured in vitro in a rich medium develop into mature pollen grains, which are fertile upon pollination in vivo. It is reported here that isolated Antirrhinum majus microspores when cultured in an optimal medium develop to form mature, fertile pollen. Their development closely resembled that of pollen formed in vivo. Isolated microspores were bombarded with Aquorea victoria Green Fluorescent Protein (GFP), Discosoma Red Fluorescent Protein (dsRFP) and beta-glucuronidase (GUS) reporter genes under the control of various promoters and transient expression was observed throughout pollen development in vitro. Bombarded and not bombarded in vitro-matured pollen grains were able to germinate both in vitro and on receptive stigmas and to set seed. The protocol of maturation, transient transformation and germination of Antirrhinum majus pollen in vitro described here provides a valuable tool for basic and applied research.  (+info)

Iridoid glycosides from Globularia davisiana. (5/35)

From the ethanolic extract of the aerial parts of Globularia davisiana, a new iridoid glycoside, davisioside (1), was isolated. Davisioside (1) comprises a rare iridoid aglycone structure with a saturated double bond between C-3 and C-4. Nine known iridoid glycosides, asperuloside (2), alpinoside (3), geniposide (4), globularin (5), globularicisin (6), 10-O-benzoylcatalpol (7), lytanthosalin (8), melampyroside (9), agnuside (10), and three known phenylethanoid glycosides, verbascoside, isoacteoside and leucosceptoside A were also isolated and characterized. The structures of the isolates were established by spectroscopic methods (one-dimensional (1D)- and two-dimensional (2D)-NMR, MS).  (+info)

Phenylethanoid and iridoid glycosides from Veronica persica. (6/35)

A new phenylethanoid glycoside, persicoside (1) and three known phenylethanoid glycosides, acteoside (2), isoacteoside (3) and lavandulifolioside (4) were isolated from the aerial parts of Veronica persica. On the basis of spectral analyses, the structure of the new compound was elucidated to be 3,4-dihydroxy-beta-phenylethoxy-O-[beta-D-glucopyranosyl-(1-->2)]-[beta-D-glucopy ranosyl-(1-->3)]-4-O-caffeoyl-beta-D-glucopyranoside. Persicoside (1) and acteoside (2) exhibited radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Beside phenylethanoid glycosides, a hexitol, dulcitol (5) and seven known iridoid glucosides, aucubin (6), veronicoside (7), amphicoside (8), 6-O-veratroyl-catalpol (9), catalposide (10), verproside (11) and verminoside (12) were isolated.  (+info)

Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidus. (7/35)

Glycine and serine are potential sources of nitrogen for the aquatic resurrection plant Chamaegigas intrepidus Dinter in the rock pools that provide its natural habitat. The pathways by which these amino acids might be utilized were investigated by incubating C. intrepidus roots and maize (Zea mays) root tips with [(15)N]glycine, [(15)N]serine and [2-(13)C]glycine. The metabolic fate of the label was followed using in vivo NMR spectroscopy, and the results were consistent with the involvement of the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) in the utilization of glycine. In contrast, the labelling patterns provided no evidence for the involvement of serine:glyoxylate aminotransferase in the metabolism of glycine by the root tissues. The key observations were: (i) the release of [(15)N]ammonium during [(15)N]-labelling experiments; and (ii) the detection of a characteristic set of serine isotopomers in the [2-(13)C]glycine experiments. The effects of aminoacetonitrile, amino-oxyacetate, and isonicotinic acid hydrazide, all of which inhibit GDC and SHMT to some extent, and of methionine sulphoximine, which inhibited the reassimilation of the ammonium, supported the conclusion that GDC and SHMT were essential for the metabolism of glycine. C. intrepidus was observed to metabolize serine more readily than the maize root tips and this may be an adaptation to its nitrogen-deficient habitat. Overall, the results support the emerging view that GDC is an essential component of glycine catabolism in non-photosynthetic tissues.  (+info)

S-RNase-mediated self-incompatibility. (8/35)

The Solanaceae, Rosaceae, and Scrophulariaceae families all possess an RNase-mediated self-incompatibility mechanism through which their pistils can recognize and reject self-pollen to prevent inbreeding. The highly polymorphic S-locus controls the self-incompatibility interaction, and the S-locus of the Solanaceae has been shown to be a multi-gene complex in excess of 1.3 Mb. To date, the function of only one of the S-locus genes, the S-RNase gene, has been determined. This article reviews the current status of the search for the pollen S-gene and the current models for how S-haplotype specific inhibition of pollen tubes can be accomplished by S-RNases.  (+info)