Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. (1/235)

Loss of heterozygosity within the short arm of chromosome 3 is a common molecular event in several types of solid tumors. In breast cancer, 3p loss of heterozygosity occurs in invasive tumor cells as well as in morphologically normal terminal ductal lobular units adjacent to carcinoma in some cases [G. Deng et al., Science (Wash. DC), 274: 2057-2059, 1996.]. The most frequent region of allelic loss at 3p24.3 in morphologically normal terminal ductal lobular units encompasses the thyroid hormone receptor beta1 (TRbeta1) gene. Here we have observed a variable degree of TRbeta1 promoter hypermethylation in all 11 cases of primary breast cancer examined. Moreover, hypermethylation occurred at the same CpG sites in nonmalignant tissue peripheral to carcinoma in 4 of 11 cases. The lack of TRbeta1 nuclear staining, a likely result of biallelic gene inactivation, was observed in 25% (22 of 85) of primary tumors. This is a first demonstration of promoter hypermethylation and a concurrent reduction of TRbeta1 transcripts in breast cancer cell lines, although specific CpG sites targeted for gene silencing remain to be determined. Gene expression was restored by treatment with 5-aza-deoxycytidine in such cases. The observation of early, frequent, and multiple mechanisms of TRbeta1 inactivation suggests a potential role for this gene in the suppression of breast tumorigenesis.  (+info)

Ribozyme suppression of endogenous thyroid hormone receptor activity in Xenopus laevis cells. (2/235)

Xenopus laevis is an excellent model for thyroid hormone (T3)-regulated gene expression. T3 initiates two drastically different pathways during metamorphosis: death of larval tissues and growth of adult tissues. The role that each T3 receptor (TR) isotype, alpha and beta, plays in metamorphosis is uncertain. The X.laevis tetraploid genome limits experiments to overexpression, misexpression and dominant negative studies. Ribozymes offer an alternative by suppressing gene activity through specific mRNA reduction. It has been suggested that ribozymes will not work in X.laevis because of the organism's intracellular environment and body temperature. In this study, we show that hammerhead ribozymes are active in vitro against transcribed TRbeta message and in vivo against a TRbeta-luciferase fusion protein. We next show that TRbeta-targeted ribozymes can inhibit T3-induced transcription of a reporter gene in cultured X.laevis cells, using T3 response elements from two T3-responsive transcription factor genes. One has early expression kinetics in response to T3 and is proposed to be TRalpha regulated whereas the other has intermediate induction kinetics and thus may be partially TRbeta regulated. Therefore, ribozymes are a potentially valuable tool for overcoming the limitations in this system for examining gene function in X.laevis.  (+info)

Thyroid hormone and cardiac function in mice deficient in thyroid hormone receptor-alpha or -beta: an echocardiograph study. (3/235)

We investigated the effect of thyroid hormone (TH) receptor (TR)alpha and -beta isoforms in TH action in the heart. Noninvasive echocardiographic measurements were made in mice homozygous for disruption of TRalpha (TRalpha(0/0)) or TRbeta (TRbeta(-/-)). Mice were studied at baseline, 4 wk after TH deprivation (using a low-iodine diet containing propylthiouracil), and after 4-wk treatment with TH. Baseline heart rates (HR) were similar in wild-type (WT) and TRalpha(0/0) mice but were greater in TRbeta(-/-) mice. With TH deprivation, HR decreased 49% in WT and 37% in TRbeta(-/-) mice and decreased only 5% in TRalpha(0/0) mice from baseline, whereas HR increased in all genotypes with TH treatment. Cardiac output (CO) and cardiac index (CI) in WT mice decreased (-31 and -32%, respectively) with TH deprivation and increased (+69 and +35%, respectively) with TH treatment. The effects of CO and CI were blunted with TH withdrawal in both TRalpha(0/0) (+8 and -2%, respectively) and TRbeta(-/-) mice (-17 and -18%, respectively). Treatment with TH resulted in a 64% increase in LV mass in WT and a 44% increase in TRalpha(0/0) mice but only a 6% increase in TRbeta(-/-) mice (ANOVA P < 0.05). Taken together, these data suggest that TRalpha and TRbeta play different roles in the physiology of TH action on the heart.  (+info)

Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. (4/235)

Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor with no known ligand. We showed previously that phosphorylation at serine 203 located N'-terminal to the ligand binding domain (LBD) enhanced cofactor recruitment, analogous to the ligand-mediated recruitment in ligand-dependent receptors. In this study, results of biochemical analyses and an LBD helix assembly assay suggest that the SF-1 LBD adopts an active conformation, with helices 1 and 12 packed against the predicted alpha-helical bundle, in the apparent absence of ligand. Fine mapping of the previously defined proximal activation function in SF-1 showed that the activation function mapped fully to helix 1 of the LBD. Limited proteolyses demonstrate that phosphorylation of S203 in the hinge region mimics the stabilizing effects of ligand on the LBD. Moreover, similar effects were observed in an SF-1/thyroid hormone LBD chimera receptor, illustrating that the S203 phosphorylation effects are transferable to a heterologous ligand-dependent receptor. Our collective data suggest that the hinge together with helix 1 is an individualized specific motif, which is tightly associated with its cognate LBD. For SF-1, we find that this intramolecular association and hence receptor activity are further enhanced by mitogen-activated protein kinase phosphorylation, thus mimicking many of the ligand-induced changes observed for ligand-dependent receptors.  (+info)

Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. (5/235)

Thyroid hormone and the beta isoform of its receptor, Trb, are essential for normal development of the mammalian auditory system. We have analyzed auditory system function and structure in a mouse strain with a targeted Thrb mutation, Thrb(PV), which leads to the loss of binding of thyroid hormone (T3) to the Trb protein. Heterozygosity for the orthologous human THRB(PV) mutation and other similar mutations in human THRB cause resistance to thyroid hormone (RTH), which is occasionally associated with mild sensorineural hearing impairment. Auditory brainstem response analysis of heterozygous Thrb(PV)/+ mice demonstrates that they develop normal hearing. In contrast, Thrb(PV)/Thrb(PV) mice have severe hearing impairment that is already present at 3 weeks of age. This hearing loss is associated with disruption of postnatal morphogenesis of the tectorial membrane and organ of Corti. Comparison with the previously described phenotype of a Thrb -/- knockout strain suggests that Thrb(PV) disrupts the function of other genes that are critical for development and/or maintenance of these structures.  (+info)

Sick euthyroid syndrome is associated with decreased TR expression and DNA binding in mouse liver. (6/235)

Infection is associated with low serum thyroid hormones and thyrotropin levels. Here we demonstrate that infection also reduces thyroid hormone receptor (TR) expression. In gel shift experiments, retinoid X receptor (RXR)/TR DNA binding was reduced in mouse liver by 60 and 77%, respectively, 4 and 16 h after lipopolysaccharide (LPS) administration. Surprisingly, LPS did not decrease either TR-alpha or TR-beta protein levels at 4 h, but by 16 h TR-alpha(1), TR-alpha(2), and TR-beta levels were reduced by 55, 87, and 41%, respectively. We previously reported that LPS rapidly decreases RXR protein levels in liver. Therefore, we added RXR-beta to hepatic nuclear extracts prepared 4 h after LPS treatment, which restored RXR/TR DNA binding to a level comparable to that of controls. A similar experiment conducted on extracts prepared 16 h after LPS administration did not restore RXR/TR DNA binding. We propose that decreased RXR expression is limiting for RXR/TR DNA binding at 4 h, whereas the reduction in both TR and RXR levels results in further decreased binding at 16 h.  (+info)

Specificity of thyroid hormone receptor subtype and steroid receptor coactivator-1 on thyroid hormone action. (7/235)

Isoforms of the thyroid hormone receptor (TR)alpha and TRbeta genes mediate thyroid hormone action. How TR isoforms modulate tissue-specific thyroid hormone (TH) action remains largely unknown. The steroid receptor coactivator-1 (SRC-1) is among a group of transcriptional coactivator proteins that bind to TRs, along with other members of the nuclear receptor superfamily, and modulate the activity of genes regulated by TH. Mice deficient in SRC-1 possess decreased tissue responsiveness to TH and many steroid hormones; however, it is not known whether or not SRC-1-mediated activation of TH-regulated gene transcription in peripheral tissues, such as heart and liver, is TR isoform specific. We have generated mice deficient in TRalpha and SRC-1, as well as in TRbeta and SRC-1, and investigated thyroid function tests and effects of TH deprivation and TH treatment compared with wild-type (WT) mice or those deficient in either TR or SRC-1 alone. The data show that 1) in the absence of TRalpha or TRbeta, SRC-1 is important for normal growth; 2) SRC-1 modulates TRalpha and TRbeta effects on heart rate; 3) two new TRbeta-dependent markers of TH action in the liver have been identified, osteopontin (upregulated) and glutathione S-transferase (downregulated); and 4) SRC-1 may mediate the hypersensitivity to TH seen in liver of TRalpha-deficient mice.  (+info)

Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development. (8/235)

PURPOSE: To clarify the functions of a specific subtype of thyroid hormone receptor (TR), TRbeta2, and photoreceptor cell-specific nuclear receptor (PNR) in the development of cone photoreceptors. METHODS: The expression of short (S)- and medium (M)-wavelength cone opsins was analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Northern blot analysis in mice without a functional PNR (rd7/rd7 mice), and levels of plasma thyroid hormones and expression of TRbeta2 were also examined. Concomitantly, by means of reporter assays, the roles of PNR and TRbeta2 in the S- and M-cone opsin expression were explored at the transcriptional level. RESULTS: In rd7/rd7 mice, an abnormal increase in cone photoreceptors was observed immediately before retinal maturation normally occurs. Although an increase in S-cone opsin in the retina was observed during and after retinal development, the expression of M-cone opsin expression was not perturbed during retinal maturation. Plasma concentrations of thyroid hormone and levels of TRbeta2 expression in the rd7/rd7 mouse retina over the developmental period were normal. Transcriptional studies demonstrated that TRbeta2, but not PNR, activated the M-cone opsin gene promoter function, while suppressing the S-cone opsin promoter function enhanced by CRX in a thyroid hormone-dependent manner. CONCLUSIONS: The results indicate that PNR may suppress proliferation of cone photoreceptor progenitor cells and that the regulation of S- and M-cone opsin gene expression is mediated by TRbeta2 and CRX, but not by PNR. Thus, our results partly disclosed the molecular mechanism of cone photoreceptor development, highlighting the distinct functions of PNR and TRbeta2.  (+info)