Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. (73/1497)

The role of HSP90 in stress tolerance was investigated in Saccharomyces cerevisiae. Cells showing 20-fold overexpression of Hsc82, an HSP90 homologue in yeast, were hypersensitive to high-NaCl or H-LiCl stresses. Hsc82-overexpressing cells appeared similar to calcineurin-defective cells in salt sensitivity and showed reduced levels of calcineurin-dependent gene expression. Co-overexpression of Cna2, the catalytic subunit of calcineurin, suppressed the hypersensitivity. Cna2 and Hsc82 coimmunoprecipitated from control cells grown under normal conditions but not from stressed cells. In contrast, coimmunoprecipitation was detected with Hsc82-overexpressing cells even after exposure to stresses. Cna2 immune complexes from stressed control cells showed a significant level of calcineurin activity, whereas those from stressed Hsc82-overexpressing cells did not. Treatment of extracts from Hsc82-overexpressing cells with Ca(2+)-calmodulin increased the calcineurin activity associated with Cna2 immune complexes. Geldanamycin, an inhibitor of HSP90 abolished the coimmunoprecipitation but did not activate calcineurin. When the expression level of Hsc82 decreased to below 30% of the normal level, cells also became hypersensitive to salt stress. In these cells, the amount of Cna2 was reduced, likely as a result of degradation. The present results showed that Hsc82 binds to and stabilizes Cna2 and that dissociation of Cna2 from Hsc82 is necessary for its activation.  (+info)

Calpain mutants with increased Ca2+ sensitivity and implications for the role of the C(2)-like domain. (74/1497)

The ubiquitous calpain isoforms (mu- and m-calpain) are Ca(2+)-dependent cysteine proteases that require surprisingly high Ca(2+) concentrations for activation in vitro ( approximately 50 and approximately 300 microm, respectively). The molecular basis of such a high requirement for Ca(2+) in vitro is not known. In this study, we substantially reduced the concentration of Ca(2+) required for the activation of m-calpain in vitro through the specific disruption of interdomain interactions by structure-guided site-directed mutagenesis. Several interdomain electrostatic interactions involving lysine residues in domain II and acidic residues in the C(2)-like domain III were disrupted, and the effects of these mutations on activity and Ca(2+) sensitivity were analyzed. The mutation to serine of Glu-504, a residue that is conserved in both mu- and m-calpain and interacts most notably with Lys-234, reduced the in vitro Ca(2+) requirement for activity by almost 50%. The mutation of Lys-234 to serine or glutamic acid resulted in a similar reduction. These are the first reported cases in which point mutations have been able to reduce the Ca(2+) requirement of calpain. The structures of the mutants in the absence of Ca(2+) were shown by x-ray crystallography to be unchanged from the wild type, demonstrating that the increase in Ca(2+) sensitivity was not attributable to conformational change prior to activation. The conservation of sequence between mu-calpain, m-calpain, and calpain 3 in this region suggests that the results can be extended to all of these isoforms. Whereas the primary Ca(2+) binding is assumed to occur at EF-hands in domains IV and VI, these results show that domain II-domain III salt bridges are important in the process of the Ca(2+)-induced activation of calpain and that they influence the overall Ca(2+) requirement of the enzyme.  (+info)

Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. (75/1497)

The neurofibromatosis 2 tumor suppressor gene product merlin has strong sequence identity to the ezrin-radixin-moesin (ERM) family over its approximately 300-residue N-terminal domain. ERM proteins are membrane cytoskeletal linkers that are negatively regulated by an intramolecular association between domains known as NH(2)- and COOH-ERM association domains (N- and C-ERMADs) that mask sites for binding membrane-associated proteins, such as EBP50 and E3KARP, and F-actin. Here we show that merlin has self-association regions analogous to the N- and C-ERMADs. Moreover, the N-/C-ERMAD interaction in merlin is relatively weak and dynamic, and this property is reflected by the ability of full-length recombinant merlin to form homo-oligomers. Remarkably, the merlin C-ERMAD has a higher affinity for the N-ERMAD of ezrin than the N-ERMAD of merlin. Both the ezrin and merlin N-ERMAD bind EBP50. This interaction with the ezrin N-ERMAD can be inhibited by the presence of the ezrin C-ERMAD, whereas interaction with the merlin N-ERMAD is not inhibited by either C-ERMAD. E3KARP binds tightly to the ezrin N-ERMAD but has little affinity for the merlin N-ERMAD. The implications of these associations and the hierarchies of binding for the function and regulation of merlin and ERM proteins are discussed.  (+info)

The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. (76/1497)

In the transcriptional response of Saccharomyces cerevisiae to stress, both activators and repressors are implicated. Here we demonstrate that the ion homeostasis determinant, HAL1, is regulated by two antagonistically operating bZIP transcription factors, the Sko1p repressor and the Gcn4p activator. A single CRE-like sequence (CRE(HAL1)) at position -222 to -215 with the palindromic core sequence TTACGTAA is essential for stress-induced expression of HAL1. Down-regulation of HAL1 under normal growth conditions requires specific binding of Sko1p to CRE(HAL1) and the corepressor gene SSN6. Release from this repression depends on the function of the high-osmolarity glycerol pathway. The Gcn4p transcriptional activator binds in vitro to the same CRE(HAL1) and is necessary for up-regulated HAL1 expression in vivo, indicating a dual control mechanism by a repressor-activator pair occupying the same promoter target sequence. gcn4 mutants display a strong sensitivity to elevated K(+) or Na(+) concentrations in the growth medium. In addition to reduced HAL1 expression, this sensitivity is explained by the fact that amino acid uptake is drastically impaired by high Na(+) and K(+) concentrations in wild-type yeast cells. The reduced amino acid biosynthesis of gcn4 mutants would result in amino acid deprivation. Together with the induction of HAL1 by amino acid starvation, these results suggest that salt stress and amino acid availability are physiologically interconnected.  (+info)

The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. (77/1497)

Several lines of evidence suggest that regulation of intracellular Ca(2+) levels is crucial for adaptation of plants to environmental stress. We have cloned and characterized Arabidopsis auto-inhibited Ca(2+)-ATPase, isoform 4 (ACA4), a calmodulin-regulated Ca(2+)-ATPase. Confocal laser scanning data of a green fluorescent protein-tagged version of ACA4 as well as western-blot analysis of microsomal fractions obtained from two-phase partitioning and Suc density gradient centrifugation suggest that ACA4 is localized to small vacuoles. The N terminus of ACA4 contains an auto-inhibitory domain with a binding site for calmodulin as demonstrated through calmodulin-binding studies and complementation experiments using the calcium transport yeast mutant K616. ACA4 and PMC1, the yeast vacuolar Ca(2+)-ATPase, conferred protection against osmotic stress such as high NaCl, KCl, and mannitol when expressed in the K616 strain. An N-terminally modified form of ACA4 specifically conferred increased NaCl tolerance, whereas full-length ATPase had less effect.  (+info)

An intrahelical salt bridge within the trigger site stabilizes the GCN4 leucine zipper. (78/1497)

We previously reported that a helical trigger segment within the GCN4 leucine zipper monomer is indispensable for the formation of its parallel two-stranded coiled coil. Here, we demonstrate that the intrinsic secondary structure of the trigger site is largely stabilized by an intrahelical salt bridge. Removal of this surface salt bridge by a single amino acid mutation induced only minor changes in the backbone structure of the GCN4 leucine zipper dimer as verified by nuclear magnetic resonance. The mutation, however, substantially destabilized the dimeric structure. These findings support the proposed hierarchic folding mechanism of the GCN4 coiled coil in which local helix formation within the trigger segment precedes dimerization.  (+info)

Thermostable and site-specific DNA binding of the gene product ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archael plasmid copy control protein. (79/1497)

There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of -6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85 degrees C.  (+info)

Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. (80/1497)

Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression.  (+info)