Heart rate during exercise with leg vascular occlusion in spinal cord-injured humans. (1/1948)

Feed-forward and feedback mechanisms are both important for control of the heart rate response to muscular exercise, but their origin and relative importance remain inadequately understood. To evaluate whether humoral mechanisms are of importance, the heart rate response to electrically induced cycling was studied in participants with spinal cord injury (SCI) and compared with that elicited during volitional cycling in able-bodied persons (C). During voluntary exercise at an oxygen uptake of approximately 1 l/min, heart rate increased from 66 +/- 4 to 86 +/- 4 (SE) beats/min in seven C, and during electrically induced exercise at a similar oxygen uptake in SCI it increased from 73 +/- 3 to 110 +/- 8 beats/min. In contrast, blood pressure increased only in C (from 88 +/- 3 to 99 +/- 4 mmHg), confirming that, during exercise, blood pressure control is dominated by peripheral neural feedback mechanisms. With vascular occlusion of the legs, the exercise-induced increase in heart rate was reduced or even eliminated in the electrically stimulated SCI. For C, heart rate tended to be lower than during exercise with free circulation to the legs. Release of the cuff elevated heart rate only in SCI. These data suggest that humoral feedback is of importance for the heart rate response to exercise and especially so when influence from the central nervous system and peripheral neural feedback from the working muscles are impaired or eliminated during electrically induced exercise in individuals with SCI.  (+info)

Command-related distribution of regional cerebral blood flow during attempted handgrip. (2/1948)

To localize a central nervous feed-forward mechanism involved in cardiovascular regulation during exercise, brain activation patterns were measured in eight subjects by employing positron emission tomography and oxygen-15-labeled water. Scans were performed at rest and during rhythmic handgrip before and after axillary blockade with bupivacaine. After the blockade, handgrip strength was reduced to 25% (range 0-50%) of control values, whereas handgrip-induced heart rate and blood pressure increases were unaffected (13 +/- 3 beats/min and 12 +/- 5 mmHg, respectively; means +/- SE). Before regional anesthesia, handgrip caused increased activation in the contralateral sensory motor area, the supplementary motor area, and the ipsilateral cerebellum. We found no evidence for changes in the activation pattern due to an interaction between handgrip and regional anesthesia. This was true for both the blocked and unblocked arm. It remains unclear whether the activated areas are responsible for the increase in cardiovascular variables, but neural feedback from the contracting muscles was not necessary for the activation in the mentioned areas during rhythmic handgrip.  (+info)

Lactate kinetics at rest and during exercise in lambs with aortopulmonary shunts. (3/1948)

In a previous study [G. C. M. Beaufort-Krol, J. Takens, M. C. Molenkamp, G. B. Smid, J. J. Meuzelaar, W. G. Zijlstra, and J. R. G. Kuipers. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H1503-H1512, 1998], a lower systemic O2 supply was found in lambs with aortopulmonary left-to-right shunts. To determine whether the lower systemic O2 supply results in increased anaerobic metabolism, we used [1-13C]lactate to investigate lactate kinetics in eight 7-wk-old lambs with shunts and eight control lambs, at rest and during moderate exercise [treadmill; 50% of peak O2 consumption (VO2)]. The mean left-to-right shunt fraction in the shunt lambs was 55 +/- 3% of pulmonary blood flow. Arterial lactate concentrations and the rate of appearance (Ra) and disappearance (Rd) of lactate were similar in shunt and control lambs, both at rest (lactate: 1, 201 +/- 76 vs. 1,214 +/- 151 micromol/l; Ra = Rd: 12.97 +/- 1.71 vs. 12.55 +/- 1.25 micromol. min-1. kg-1) and during a similar relative workload. We found a positive correlation between Ra and systemic blood flow, O2 supply, and VO2 in both groups of lambs. In conclusion, shunt lambs have similar lactate kinetics as do control lambs, both at rest and during moderate exercise at a similar fraction of their peak VO2, despite a lower systemic O2 supply.  (+info)

Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. (4/1948)

BACKGROUND: The chemoreflexes are an important mechanism for regulation of both breathing and autonomic cardiovascular function. Abnormalities in chemoreflex mechanisms may be implicated in increased cardiovascular stress in patients with obstructive sleep apnea (OSA). We tested the hypothesis that chemoreflex function is altered in patients with OSA. METHODS AND RESULTS: We compared ventilatory, sympathetic, heart rate, and blood pressure responses to hypoxia, hypercapnia, and the cold pressor test in 16 untreated normotensive patients with OSA and 12 normal control subjects matched for age and body mass index. Baseline muscle sympathetic nerve activity (MSNA) was higher in the patients with OSA than in the control subjects (43+/-4 versus 21+/-3 bursts per minute; P<0. 001). During hypoxia, patients with OSA had greater increases in minute ventilation (5.8+/-0.8 versus 3.2+/-0.7 L/min; P=0.02), heart rate (10+/-1 versus 7+/-1 bpm; P=0.03), and mean arterial pressure (7+/-2 versus 0+/-2 mm Hg; P=0.001) than control subjects. Despite higher ventilation and blood pressure (both of which inhibit sympathetic activity) in OSA patients, the MSNA increase during hypoxia was similar in OSA patients and control subjects. When the sympathetic-inhibitory influence of breathing was eliminated by apnea during hypoxia, the increase in MSNA in OSA patients (106+/-20%) was greater than in control subjects (52+/-23%; P=0.04). Prolongation of R-R interval with apnea during hypoxia was also greater in OSA patients (24+/-6%) than in control subjects (7+/-5%) (P=0.04). Autonomic, ventilatory, and blood pressure responses to hypercapnia and the cold pressor test in OSA patients were not different from those observed in control subjects. CONCLUSIONS: OSA is associated with a selective potentiation of autonomic, hemodynamic, and ventilatory responses to peripheral chemoreceptor activation by hypoxia.  (+info)

Diastolic compliance is reduced in obese rabbits. (5/1948)

Obesity often leads to symptoms of cardiopulmonary congestion associated with normal systolic but abnormal diastolic function. This study analyzed alterations in passive diastolic compliance in obesity using the rabbit model. New Zealand White rabbits were fed a normal (n=8) or 10% added fat diet (n=8). After 12 weeks, rabbits fed the high fat diet developed obesity (5.34+/-0.11 versus 3.68+/-0. 04 kg, P+info)

Manganese sulfate-dependent glycosylation of endogenous glycoproteins in human skeletal muscle is catalyzed by a nonglucose 6-P-dependent glycogen synthase and not glycogenin. (6/1948)

Glycogenin, a Mn2+-dependent, self-glucosylating protein, is considered to catalyze the initial glucosyl transfer steps in glycogen biogenesis. To study the physiologic significance of this enzyme, measurements of glycogenin mediated glucose transfer to endogenous trichloroacetic acid precipitable material (protein-bound glycogen, i.e., glycoproteins) in human skeletal muscle were attempted. Although glycogenin protein was detected in muscle extracts, activity was not, even after exercise that resulted in marked glycogen depletion. Instead, a MnSO4-dependent glucose transfer to glycoproteins, inhibited by glycogen and UDP-pyridoxal (which do not affect glycogenin), and unaffected by CDP (a potent inhibitor of glycogenin), was consistently detected. MnSO4-dependent activity increased in concert with glycogen synthase fractional activity after prolonged exercise, and the MnSO4-dependent enzyme stimulated glucosylation of glycoproteins with molecular masses lower than those glucosylated by glucose 6-P-dependent glycogen synthase. Addition of purified glucose 6-P-dependent glycogen synthase to the muscle extract did not affect MnSO4-dependent glucose transfer, whereas glycogen synthase antibody completely abolished MnSO4-dependent activity. It is concluded that: (1) MnSO4-dependent glucose transfer to glycoproteins is catalyzed by a nonglucose 6-P-dependent form of glycogen synthase; (2) MnSO4-dependent glycogen synthase has a greater affinity for low molecular mass glycoproteins and may thus play a more important role than glucose 6-P-dependent glycogen synthase in the initial stages of glycogen biogenesis; and (3) glycogenin is generally inactive in human muscle in vivo.  (+info)

Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. (7/1948)

1. The circadian timing system has been implicated in age-related changes in sleep structure, timing and consolidation in humans. 2. We investigated the circadian regulation of sleep in 13 older men and women and 11 young men by forced desynchrony of polysomnographically recorded sleep episodes (total, 482; 9 h 20 min each) and the circadian rhythms of plasma melatonin and core body temperature. 3. Stage 4 sleep was reduced in older people. Overall levels of rapid eye movement (REM) sleep were not significantly affected by age. The latencies to REM sleep were shorter in older people when sleep coincided with the melatonin rhythm. REM sleep was increased in the first quarter of the sleep episode and the increase of REM sleep in the course of sleep was diminished in older people. 4. Sleep propensity co-varied with the circadian rhythms of body temperature and plasma melatonin in both age groups. Sleep latencies were longest just before the onset of melatonin secretion and short sleep latencies were observed close to the temperature nadir. In older people sleep latencies were longer close to the crest of the melatonin rhythm. 5. In older people sleep duration was reduced at all circadian phases and sleep consolidation deteriorated more rapidly during the course of sleep, especially when the second half of the sleep episode occurred after the crest of the melatonin rhythm. 6. The data demonstrate age-related decrements in sleep consolidation and increased susceptibility to circadian phase misalignment in older people. These changes, and the associated internal phase advance of the propensity to awaken from sleep, appear to be related to the interaction between a reduction in the homeostatic drive for sleep and a reduced strength of the circadian signal promoting sleep in the early morning.  (+info)

Noninvasive exploration of cardiac autonomic neuropathy. Four reliable methods for diabetes? (8/1948)

OBJECTIVE: The purpose of this work was to assess relevant information that could be provided by various mathematical analyses of spontaneous blood pressure (BP) and heart rate (HR) variabilities in diabetic cardiovascular neuropathy. RESEARCH DESIGN AND METHODS: There were 10 healthy volunteers and 11 diabetic subjects included in the study. Diabetic patients were selected for nonsymptomatic orthostatic hypotension in an assessment of their cardiovascular autonomic impairment. Cardiac autonomic function was scored according to Ewing's methodology adapted to the use of a Finapres device. The spontaneous beat-to-beat BP and HR variabilities were then analyzed on a 1-h recording in supine subjects. The global variabilities were assessed by standard deviation, fractal dimension, and spectral power. The cardiac baroreflex function was estimated by cross-spectral sequences and Z analyses. RESULTS: In diabetic patients, Ewing's scores ranged from 1 to 4.5, confirming cardiovascular autonomic dysfunction. In these diabetic patients, global indices of variabilities were consistently lower than in healthy subjects. Furthermore, some of them (standard deviation and fractal dimension of HR, spectral power of systolic blood pressure and HR) were significantly correlated with the Ewing's scores. The Z methods and the spectral analysis found that the cardiac baroreflex was less effective in diabetic subjects. However, the baroreflex sensitivity could not be reliably assessed in all the patients. The sequence method pointed out a decreased number of baroreflex sequences in diabetic subjects that was correlated to the Ewing's score. CONCLUSIONS: Indices of HR spontaneous beat-to-beat variability are consistently related to the degree of cardiac autonomic dysfunction, according to Ewing's methodology. The Z method and spectral analysis confirmed that the cardiac baroreflex was impaired in diabetic patients. These methods might be clinically relevant for use in detecting incipient neuropathy in diabetic patients.  (+info)