Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. (1/77)

The O-antigen polysaccharide (OPS) of Rhizobium etli CE3 lipopolysaccharide (LPS) is linked to the core oligosaccharide via an N-acetylquinovosaminosyl (QuiNAc) residue. A mutant of CE3, CE166, produces LPS with reduced amounts of OPS, and a suppressed mutant, CE166 alpha, produces LPS with nearly normal OPS levels. Both mutants are deficient in QuiNAc production. Characterization of OPS from CE166 and CE166 alpha showed that QuiNAc was replaced by its 4-keto derivative, 2-acetamido-2,6-dideoxyhexosyl-4-ulose. The identity of this residue was determined by NMR and mass spectrometry, and by gas chromatography-mass spectrometry analysis of its 2-acetamido-4-deutero-2,6-dideoxyhexosyl derivatives produced by reduction of the 4-keto group using borodeuteride. Mass spectrometric and methylation analyses showed that the 2-acetamido-2,6-dideoxyhexosyl-4-ulosyl residue was 3-linked and attached to the core-region external Kdo III residue of the LPS, the same position as that of QuiNAc in the CE3 LPS. DNA sequencing revealed that the transposon insertion in strain CE166 was located in an open reading frame whose predicted translation product, LpsQ, falls within a large family of predicted open reading frames, which includes biochemically characterized members that are sugar epimerases and/or reductases. A hypothesis to be tested in future work is that lpsQ encodes UDP-2-acetamido-2,6-dideoxyhexosyl-4-ulose reductase, the second step in the synthesis of UDP-QuiNAc from UDP-GlcNAc.  (+info)

Three genes encoding for putative methyl- and acetyltransferases map adjacent to the wzm and wzt genes and are essential for O-antigen biosynthesis in Rhizobium etli CE3. (2/77)

The elucidation of the structure of the O-antigen of Rhizobium etli CE3 predicts that the R. etli CE3 genome must contain genes encoding acetyl- and methyltransferases to confer the corresponding modifications to the O-antigen. We identified three open reading frames (ORFs) upstream of wzm, encoding the membrane component of the O-antigen transporter and located in the lps alpha-region of R. etli CE3. The ORFs encode two putative acetyltransferases with similarity to the CysE-LacA-LpxA-NodL family of acetyltransferases and one putative methyltransferase with sequence motifs common to a wide range of S-adenosyl-L-methionine-dependent methyltransferases. Mutational analysis of the ORFs encoding the putative acetyltransferases and methyltransferase revealed that the acetyl and methyl decorations mediated by these specific enzymes are essential for O-antigen synthesis. Composition analysis and high performance anion exchange chromatography analysis of the lipopolysaccharides (LPSs) of the mutants show that all of these LPSs contain an intact core region and lack the O-antigen polysaccharide. The possible role of these transferases in the decoration of the O-antigen of R. etli is discussed.  (+info)

Biochemical characterization of a Rhizobium etli monovalent cation-stimulated acyl-coenzyme A carboxylase with a high substrate specificity constant for propionyl-coenzyme A. (3/77)

Biotin has a profound effect on the metabolism of rhizobia. It is reported here that the activities of the biotin-dependent enzymes acetyl-coenzyme A carboxylase (ACC; EC 6.4.1.2) and propionyl-coenzyme A carboxylase (PCC; EC 6.4.1.3) are present in all species of the five genera comprising the Rhizobiaceae which were examined. Evidence is presented that the ACC and PCC activities detectable in Rhizobium etli extracts are catalysed by a single acyl-coenzyme A carboxylase. The enzyme from R. etli strain 12-53 was purified 478-fold and displayed its highest activity with propionyl-CoA as substrate, with apparent K(m) and V(max) values of 0.064 mM and 2885 nmol min(-1) (mg protein)(-1), respectively. The enzyme carboxylated acetyl-CoA and butyryl-CoA with apparent K(m) values of 0.392 and 0.144 mM, respectively, and V(max) values of 423 and 268 nmol min(-1) (mg protein)(-1), respectively. K(+), or Cs(+) markedly activated the enzyme, which was essentially inactive in their absence. Electrophoretic analysis indicated that the acyl-CoA carboxylase was composed of a 74 kDa biotin-containing alpha subunit and a 45 kDa biotin-free beta subunit, and gel chromatography indicated a total molecular mass of 620 000 Da. The strong kinetic preference of the enzyme for propionyl-CoA is consistent with its participation in an anaplerotic pathway utilizing this substrate.  (+info)

Regulatory role of Rhizobium etli CNPAF512 fnrN during symbiosis. (4/77)

The Rhizobium etli CNPAF512 fnrN gene was identified in the fixABCX rpoN(2) region. The corresponding protein contains the hallmark residues characteristic of proteins belonging to the class IB group of Fnr-related proteins. The expression of R. etli fnrN is highly induced under free-living microaerobic conditions and during symbiosis. This microaerobic and symbiotic induction of fnrN is not controlled by the sigma factor RpoN and the symbiotic regulator nifA or fixLJ, but it is due to positive autoregulation. Inoculation of Phaseolus vulgaris with an R. etli fnrN mutant strain resulted in a severe reduction in the bacteroid nitrogen fixation capacity compared to the wild-type capacity, confirming the importance of FnrN during symbiosis. The expression of the R. etli fixN, fixG, and arcA genes is strictly controlled by fnrN under free-living microaerobic conditions and in bacteroids during symbiosis with the host. However, there is an additional level of regulation of fixN and fixG under symbiotic conditions. A phylogenetic analysis of the available rhizobial FnrN and FixK proteins grouped the proteins in three different clusters.  (+info)

2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant. (5/77)

When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395 alpha 395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395 alpha 395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps(+) strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions.  (+info)

Glutamine utilization by Rhizobium etli. (6/77)

We undertook the study of the use of glutamine (Gln) as the source of carbon and energy by Rhizobium etli. Tn5-induced mutagenesis allowed us to identify several genes required for Gln utilization, including those coding for two broad-range amino acid transporters and a glutamate dehydrogenase. The isolated mutants were characterized by the analysis of their capacity i) to grow on different media, ii) to transport Gln (uptake assays), and iii) to utilize Gln as the C energy source (CO2 production from Gln). We show that Gln is degraded through the citric acid cycle and that its utilization as the sole C source is related to a change in the bacterial cell shape (from bacillary to coccoid form) and a high susceptibility to a thiol oxidative insult. Both these data and the analysis of ntr-dependent promoters suggested that Gln-grown bacteria are under a condition of C starvation and N sufficiency, and as expected, the addition of glucose counteracted the morphological change and increased both the bacterial growth rate and their resistance to oxidative stress. Finally, a nodulation analysis indicates that the genes involved in Gln transport and degradation are dispensable for the bacterial ability to induce and invade developing nodules, whereas those involved in gluconeogenesis and nucleotide biosynthesis are strictly required.  (+info)

Regulation of transcription and activity of Rhizobium etli glutaminase A. (7/77)

The present study determines the regulatory mechanisms that operate on Rhizobium etli glutaminase A. glsA gene expression levels were evaluated under several metabolic conditions by fusions of the glsA gene promoter and the transcriptional reporter cassette uidA2-aad. glsA expression was directly correlated to the glutaminase A activity found under the tested growth conditions, reaching its maximum level in the presence of glutamine and during exponential growth phase. Glutamine induces glsA expression. The influence of allosteric metabolites on glutaminase A activity was also determined. The purified enzyme was inhibited by 2-oxoglutarate and pyruvate, whereas oxaloacetate and glyoxylate modulate it positively. Glutaminase A is not inhibited by glutamate and is activated by ammonium. Glutaminase A participates in an ATP-consuming cycle where glutamine is continually degraded and resynthesized by glutamine synthetase (GS). GS and glutaminase A activities appear simultaneously during bacterial growth under different metabolic conditions and their control mechanisms are not reciprocal. Slight overproduction in glutaminase A expression causes a reduction in growth yield and a dramatic decrease in bacterial growth. We propose a model for regulation of glutaminase A, and discuss its contribution to glutamine cycle regulation.  (+info)

Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d. (8/77)

An approach originally designed to identify functional origins of conjugative transfer (oriT or mob) in a bacterial genome (J. A. Herrera-Cervera, J. M. Sanjuan-Pinilla, J. Olivares, and J. Sanjuan, J. Bacteriol. 180:4583-4590, 1998) was modified to improve its reliability and prevent selection of undesired false mob clones. By following this modified approach, we were able to identify two functional mob regions in the genome of Rhizobium etli CFN42. One corresponds to the recently characterized transfer region of the nonsymbiotic, self-transmissible plasmid pRetCFN42a (C. Tun-Garrido, P. Bustos, V. Gonzalez, and S. Brom, J. Bacteriol. 185:1681-1692, 2003), whereas the second mob region belongs to the symbiotic plasmid pRetCFN42d. The new transfer region identified contains a putative oriT and a typical conjugative (tra) gene cluster organization. Although pRetCFN42d had not previously been shown to be self-transmissible, mobilization of cosmids containing this tra region required the presence of a wild-type pRetCFN42d in the donor cell; the presence of multiple copies of this mob region in CFN42 also promoted conjugal transfer of the Sym plasmid pRetCFN42d. The overexpression of a small open reading frame, named yp028, located downstream of the putative relaxase gene traA, appeared to be responsible for promoting the conjugal transfer of the R. etli pSym under laboratory conditions. This yp028-dependent conjugal transfer required a wild-type pRetCFN42d traA gene. Our results suggest for the first time that the R. etli symbiotic plasmid is self-transmissible and that its transfer is subject to regulation. In wild-type CFN42, pRetCFN42d tra gene expression appears to be insufficient to promote plasmid transfer under standard laboratory conditions; gene yp028 may play some role in the activation of conjugal transfer in response to as-yet-unknown environmental conditions.  (+info)