Renal response to captopril reflects state of local renin system in healthy humans. (33/2490)

BACKGROUND: Heightened activity of the renin-angiotensin system has been linked to the development of both essential hypertension and diabetic nephropathy. Blunting of the renal vasoconstrictor response to Ang II, specifically when it is corrected by angiotensin converting enzyme (ACE) inhibition, is a feature which we have employed as a marker for activation of the intrarenal RAS. In this study we tested the hypothesis that variation in the renal vasodilator response to ACE inhibition in healthy humans reflected the variation in angiotensin-mediated renal vasoconstriction provoked by a low-salt diet. METHODS: We studied 20 healthy people (ages 19 to 57; 15 males) who were in balance on a low sodium diet. Ang II was infused for 45 minutes (3 ng/kg/min), followed by 25 mg captopril and a repeat Ang II infusion; PAH clearance was measured at the end of each interval. RESULTS: All subjects responded to captopril with a rise in renal plasma flow (range 43 to 242, mean 118 + 12 ml/min/1.73 m2). Individual vasodilator response to captopril was a strong inverse predictor of the precaptopril vasoconstrictor response to Ang II (P = 0.006, r = -0.59). There was a stronger, positive correlation of the vasodilator response to captopril and enhancement of Ang II responsiveness after captopril (r = 0.57). Plasma renin activity was significantly correlated with captopril response among the large responders (P = 0.003; r = 0.83), but not at all among those with little response. CONCLUSION: These results suggest substantial variation in angiotensin-mediated control of the renal circulation in healthy individuals on a low sodium intake. Variation in the vasodilator response to captopril, correlated with responses to Ang II, provides a measure of that control.  (+info)

Estrogen, natriuretic peptides and the renin-angiotensin system. (34/2490)

There are significant gender-specific differences in the incidence of hypertension and the clinical outcome of cardiovascular disease between premenopausal women and age-matched men, suggesting that sex hormones such as estrogen (E) might be responsible for the observed cardioprotective effects. This cardioprotective action of E is thought to involve lipoproteins. However, the effect of E on the lipid profile accounts for about 50% of the reduction in cardiovascular disease, indicating that there might be other mechanisms by which E exerts its cardioprotective effects. At present, the underlying mechanism of E action is poorly understood. In this review, the interplay between E, the natriuretic peptides (NP) and the renin-angiotensin system (RAS) is examined. It is hypothesized that E might, through endocrine and/or paracrine action, modulate cardiac NP in females by affecting the RAS either directly or indirectly.  (+info)

Effects of a lipoxygenase inhibitor, panaxynol, on vascular contraction induced by angiotensin II. (35/2490)

We investigated whether a lipoxygenase inhibitor, panaxynol, affected the vascular contraction induced by angiotensin (Ang) II and the mean arterial pressure in spontaneously hypertensive rats (SHR). Panaxynol suppressed dose-dependently the contractile responses induced by 30 nM Ang II in isolated intact and endothelial cell-denuded aorta in the hamster. IC50 values in the intact and endothelial cell-denuded aorta were 23 and 20 microM, respectively. In SHR, the mean arterial pressure after injection of 30 and 60 mg/kg panaxynol was reduced, and the maximum hypotensive values were 23 and 48 mmHg, respectively. Thus, lipoxygenase products may affect the renin-angiotensin system.  (+info)

Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. (36/2490)

It has been demonstrated previously that moderate hyperglycemia without glucosuria can increase plasma renin activity and mean arterial pressure in young healthy males with early uncomplicated type 1 diabetes mellitus. This study was conducted to extend these observations by testing the hypothesis that mild to moderate hyperglycemia can affect renal function by increasing renin angiotensin system (RAS) activity in diabetic humans. The study included 10 men and women with early, uncomplicated type 1 diabetes (duration <5 yr), all ingesting a controlled sodium and protein diet. They were studied on four separate occasions, during a subdepressor dose of the angiotensin II (AngII) receptor blocker losartan, and during graded AngII infusion, 1.5 and 2.5 ng/kg per min, while euglycemic (blood glucose 4 to 6 mmol/L) and again while hyperglycemic without glucosuria (blood glucose 9 to 11 mmol/L), according to a randomized crossover design. Outcome measures included mean arterial pressure (MAP), GFR, effective renal plasma flow (ERPF), renal vascular resistance (RVR), filtration fraction (FF), and urine sodium excretion (UNaV) at baseline and in response to the above maneuvers. During hyperglycemic conditions, MAP was significantly higher compared with euglycemia, as were RVR and FF. After the administration of losartan, a significant renal and peripheral depressor effect was noted, with decreases in MAP, RVR, and FF, whereas during euglycemia the responses to losartan were minimal. AngII infusion resulted in elevations in MAP, RVR, and FF and a decline in UNaV during both glycemic phases, but the responses during hyperglycemia, most significantly at the 1.5 ng/kg per min infusion rate, were blunted. These data support the hypothesis that hyperglycemia affects renal function by activating the RAS. The mechanism remains obscure, but these contrasting responses may provide a link between the observations that maintenance of euglycemia and blockade of the RAS prevent or delay diabetic kidney disease, and furthermore, may clarify the mechanism whereby high glucose promotes renal disease progression in diabetes.  (+info)

Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. (37/2490)

Kinins have been implicated in the hemodynamic adaptation to postnatal life. The present study examined the impact of bradykinin B(2) receptor (B(2)R) gene disruption on the postnatal changes in blood pressure (BP) and the susceptibility to early onset salt-sensitive hypertension in mice. B(2)R null (-/-) and wild-type (+/+) mice were fed normal (NS, 1% NaCl) or high (HS, 5% NaCl) salt diets during pregnancy. After birth, the pups remained with their mothers until they were weaned and were subsequently continued on the respective maternal salt intake until 4 months of age. The age-related changes at 3 and 4 months in tail-cuff BP and anesthetized mean arterial pressure at 4 months were not different in NS/B(2)R(-/-) and NS/B(2)R(+/+) mice. However, there was a mild increase in BP in NS/B(2)R(-/-) at 2 months versus NS/B(2)R(+/+). In contrast, HS/B(2)R(-/-) mice manifested early onset and persistent elevations of tail-cuff BP (P<0.05) at 2, 3, and 4 months versus other groups. MAP was also higher in HS/B(2)R(-/-) than HS/B(2)R(+/+), NS/B(2)R(-/-), and NS/B(2)R(+/+) (91+/-3 versus 75+/-5, 74+/-2, and 70+/-2 mm Hg, respectively; P<0.05). Kidney renin and angiotensin type 1 receptor mRNA levels were not different. Additional studies showed that a delay in the initiation of HS until after birth was accompanied by later development of hypertension, although postnatal discontinuation of HS resulted in a gradual return of BP to normal values by 4 months of age. The results demonstrate that (1) kinins protect the developing animal from salt-sensitive hypertension, (2) lack of B(2)R from early development does not alter the maturation of BP under conditions of normal sodium intake, and (3) exposure to a HS diet during fetal life is not sufficient in itself to induce long-term hypertension in either wild-type or B(2)R null mice.  (+info)

Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans. (38/2490)

Angiotensin-converting enzyme (ACE) inhibition significantly decreases plasminogen activator inhibitor-1 (PAI-1) without altering tissue plasminogen activator (tPA) during activation of the renin-angiotensin-aldosterone system in humans. Because ACE inhibitors and angiotensin II type 1 (AT(1)) receptor antagonists differ in their effects on angiotensin II formation and bradykinin degradation, the present study compared the effect of equivalent hypotensive doses of an ACE inhibitor and AT(1) antagonist on fibrinolytic balance. Plasma PAI-1 antigen, tPA antigen, plasma renin activity, and aldosterone were measured in 25 normotensive subjects (19 white, 6 black; 14 men, 11 women; mean age 38.5+/-1.8 years; mean body mass index 25.3+/-0.7 kg/m(2)) during low salt intake alone (10 mmol Na/d), low salt intake + quinapril (40 mg PO bid), and low salt intake + losartan (50 mg PO bid). Compared with low salt alone (systolic blood pressure [BP] 118.8+/-2.2 mm Hg), both quinapril (106.3+/-2.5 mm Hg, P<0.001) and losartan (105.4+/-2. 8 mm Hg, P<0.001) reduced BP. No statistical difference was found between quinapril and losartan in their BP lowering effect. Losartan (P=0.009), but not quinapril, lowered heart rate. Both drugs significantly lowered aldosterone (P<0.001 versus low salt alone for each); however, this effect was significantly greater for quinapril than for losartan (P<0.001 for quinapril versus losartan). Treatment with quinapril, but not with losartan, was associated with a decrease in both PAI-1 antigen (P=0.03) and activity (P=0.018). PAI-1 activity was lower during treatment with quinapril than with losartan (P=0.015). The average PAI-1 antigen concentration was 13. 0+/-2.0 ng/mL during low salt alone, 10.5+/-1.6 ng/mL during quinapril treatment, and 12.3+/-2.1 ng/mL during losartan treatment. In contrast, plasma tPA antigen concentrations were reduced during treatment with losartan (P=0.03) but not with quinapril. This study provides the first evidence that ACE inhibitors and AT(1) antagonists differ in their effects on fibrinolytic balance under conditions of activation of the renin-angiotensin-aldosterone system. Further studies are needed to address the mechanism for the contrasting effects of these 2 classes of drugs on fibrinolysis and to define the clinical significance of these differences.  (+info)

Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. (39/2490)

The renin-angiotensin system is important for cardiovascular homeostasis. Currently, therapies for different cardiovascular diseases are based on inhibition of angiotensin-converting enzyme (ACE) or angiotensin II receptor blockade. Inhibition of ACE blocks metabolism of angiotensin-(1-7) to angiotensin-(1-5) and can lead to elevation of angiotensin-(1-7) levels in plasma and tissue. In animal models, angiotensin-(1-7) itself causes or enhances vasodilation and inhibits vascular contractions to angiotensin II. The function of angiotensin-(1-5) is unknown. We investigated whether angiotensin-(1-7) and angiotensin-(1-5) inhibit ACE or antagonize angiotensin-induced vasoconstrictions in humans. ACE activity in plasma and atrial tissue was inhibited by angiotensin-(1-7) up to 100%, with an IC(50) of 3.0 and 4.0 micromol/L, respectively. In human internal mammary arteries, contractions induced by angiotensin I and II and the non-ACE-specific substrate [Pro(11),D-Ala(12)]-angiotensin I were antagonized by angiotensin-(1-7) (10(-5) mol/L) in a noncompetitive way, with a 60% inhibition of the maximal response to angiotensin II. Contractions to ACE-specific substrate [Pro(10)]-angiotensin I were also inhibited, an effect only partly accounted for by antagonism of angiotensin II. Angiotensin-(1-5) inhibited plasma ACE activity with a potency equal to that of angiotensin I but had no effect on arterial contractions. In conclusion, angiotensin-(1-7) blocks angiotensin II-induced vasoconstriction and inhibits ACE in human cardiovascular tissues. Angiotensin-(1-5) only inhibits ACE. These results show that angiotensin-(1-7) may be an important modulator of the human renin-angiotensin system.  (+info)

Activation of the brain angiotensin system by in vivo human angiotensin-converting enzyme gene transfer in rats. (40/2490)

The possibility of the brain-specific expression of a component of the renin-angiotensin system was evaluated in the present study. We used the hemagglutinating virus of Japan-liposome complex to transfect human angiotensin-converting enzyme (ACE) cDNA, driven by the cytomegalovirus enhancer and beta-actin promoter, into the lateral cerebroventricle of male Sprague-Dawley rats. We evaluated the time course of hemodynamics, the tissue levels of angiotensin (Ang) II and vasopressin, and ACE activity. Intracerebroventricular transfection of the human ACE gene increased both blood pressure and heart rate. Transfected rats exhibited higher concentrations of brain Ang II and increased brain ACE activity. This activation of the brain angiotensin system was accompanied by increased vasopressin production. The increases in blood pressure and heart rate were abolished by intracerebroventricular administration of an ACE inhibitor or Ang II type 1 receptor antagonist. The expression of the transgene was widely distributed in the periventricular cell layer, the cortex, the hypothalamic nuclei, and the brain stem. Expression in the neuronal cells persisted for up to 14 days. Thus, this hemagglutinating virus of Japan-liposome method is a highly efficient system for gene delivery and is extremely useful for functional gene transfection. This novel hypertensive model may enable characterization of the functions of the renin-angiotensin system in the brain and determination of its role in the pathogenesis of hypertension.  (+info)