Measurement of TG synthesis and turnover in vivo by 2H2O incorporation into the glycerol moiety and application of MIDA. (65/749)

A method is presented for measurement of triglyceride (TG) synthesis that can be applied to slow-turnover lipids. The glycerol moiety of TG is labeled from 2H2O, and mass isotopomer distribution analysis (MIDA) is applied. Mice and rats were given 4-8% 2H2O in drinking water; TG-glycerol was isolated from adipose and liver during < or =12-wk of 2H2O labeling. Mass isotopomer abundances in the glycerol moiety of TG were measured by GC-MS. The combinatorial pattern of isotopomers revealed the number of H atoms in glycerol incorporating label from 2H2O (n) to be 3.8-4.0 of a possible 5 for adipose tissue and 4.6-4.8 for liver TG. Hepatic TG-glycerol in fact reached 97% predicted maximal value of label incorporation (4.4-4.6 x body 2H2O enrichment), indicating near-complete replacement of the liver TG pool. Label incorporation into adipose tissue revealed turnover of mesenteric TG to be faster (k = 0.21 day-1) than other depots (k = 0.04-0.06 day-1) in mice. TG isolated from subcutaneous depots of growing adult rats plateaued at 85-90% of calculated maximal values at 12 wk (k = 0.05 day-1), excluding significant dilution by unlabeled alpha-glycerol phosphate. Turnover of plasma TG, modeled from 2H incorporation over 60 min, was 0.06 min-1 (half-life 11.5 min). In summary, use of 2H2O labeling with MIDA of TG-glycerol allows measurement of new alpha-glycerol phosphate-derived TG synthesis and turnover. The hypothesis that mesenteric TG is more lipolytically active than other depots, previously difficult to prove by isotope dilution techniques, was confirmed by this label incorporation approach.  (+info)

Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. (66/749)

BACKGROUND: Commercially available testosterone immunoassays give divergent results, especially at the low concentrations seen in women. We compared immunoassays and a nonimmunochemical method that could quantify low testosterone concentrations. METHODS: We measured serum testosterone in 50 men, 55 women, and 11 children with use of eight nonisotopic immunoassays, two isotopic immunoassays, and isotope-dilution gas chromatography-mass spectrometry (ID/GC-MS). RESULTS: Compared with ID/GC-MS, 7 of the 10 immunoassays tested overestimated testosterone concentrations in samples from women; mean immunoassay results were 46% above those obtained by ID/GC-MS. The immunoassays underestimated testosterone concentrations in samples from men, giving mean results 12% below those obtained by ID/GC-MS. In women, at concentrations of 0.6-7.2 nmol/L, 3 of the 10 immunoassays gave positive mean differences >2.0 nmol/L (range, -0.7 to 3.3 nmol/L) compared with ID/GC-MS; in men at concentrations of 8.2-58 nmol/L, 3 of the 10 immunoassays tested gave mean differences >4.0 nmol/L (range, -4.8 to 2.6 nmol/L). CONCLUSION: None of the immunoassays tested was sufficiently reliable for the investigation of sera from children and women, in whom very low (0.17 nmol/L) and low (<1.7 nmol/L) testosterone concentrations are expected.  (+info)

Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. (67/749)

We examined the role of microorganisms in the degradation of the organophosphate insecticide chlorpyrifos in soils from the United Kingdom and Australia. The kinetics of degradation in five United Kingdom soils varying in pH from 4.7 to 8.4 suggested that dissipation of chlorpyrifos was mediated by the cometabolic activities of the soil microorganisms. Repeated application of chlorpyrifos to these soils did not result in the development of a microbial population with an enhanced ability to degrade the pesticide. A robust bacterial population that utilized chlorpyrifos as a source of carbon was detected in an Australian soil. The enhanced ability to degrade chlorpyrifos in the Australian soil was successfully transferred to the five United Kingdom soils. Only soils with a pH of >/=6.7 were able to maintain this degrading ability 90 days after inoculation. Transfer and proliferation of degrading microorganisms from the Australian soil to the United Kingdom soils was monitored by molecular fingerprinting of bacterial 16S rRNA genes by PCR-denaturing gradient gel electrophoresis (DGGE). Two bands were found to be associated with enhanced degradation of chlorpyrifos. Band 1 had sequence similarity to enterics and their relatives, while band 2 had sequence similarity to strains of Pseudomonas. Liquid enrichment culture using the Australian soil as the source of the inoculum led to the isolation of a chlorpyrifos-degrading bacterium. This strain had a 16S rRNA gene with a sequence identical to that of band 1 in the DGGE profile of the Australian soil. DNA probing indicated that genes similar to known organophosphate-degrading (opd) genes were present in the United Kingdom soils. However, no DNA hybridization signal was detected for the Australian soil or the isolated degrader. This indicates that unrelated genes were present in both the Australian soil and the chlorpyrifos-degrading isolate. These results are consistent with our observations that degradation of chlorpyrifos in these systems was unusual, as it was growth linked and involved complete mineralization. As the 16S rRNA gene of the isolate matched a visible DGGE band from the Australian soil, the isolate is likely to be both prominent and involved in the degradation of chlorpyrifos in this soil.  (+info)

18F-Fluorothymidine radiation dosimetry in human PET imaging studies. (68/749)

3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET imaging agent that shows promise for studying cellular proliferation in human cancers. FLT is a nucleoside analog that enters cells and is phosphorylated by human thymidine kinase 1, but the 3' substitution prevents further incorporation into DNA. We estimated the radiation dosimetry for this tracer from data gathered in patient studies. METHODS: Time-dependent tissue concentrations of radioactivity were determined from blood samples and PET images of 18 patients after intravenous injection of (18)F-FLT. Radiation-absorbed doses were calculated using the MIRD Committee methods, taking into account variations that were based on the distribution of activities observed in the individual patients. Effective dose equivalent (EDE) was calculated using International Commission on Radiological Protection Publication 60 tissue weighting factors for the standard man and woman. RESULTS: For a single bladder voiding at 6 h after (18)F-FLT injection, the (18)F-FLT EDE (mean +/- SD) was 0.028 +/- 0.012 mSv/MBq (103 +/- 43 mrem/mCi) for a standard male patient and 0.033 +/- 0.012 mSv/MBq (121 +/- 43 mrem/mCi) for a standard female patient. The organ that received the highest dose was the bladder (male, 0.179 mGy/MBq [662 mrad/mCi]; female, 0.174 mGy/MBq [646 mrad/mCi]), followed by the liver (male, 0.045 mGy/MBq [167 mrad/mCi]; female, 0.064 mGy/MBq [238 mrad/mCi]), the kidneys (male, 0.035 mGy/MBq [131 mrad/mCi]; female, 0.042 mGy/MBq [155 mrad/mCi]), and the bone marrow (male, 0.024 mGy/MBq [89 mrad/mCi]; female, 0.033 mGy/MBq [122 mrad/mCi]). CONCLUSION: Organ dose estimates for (18)F-FLT are comparable to those associated with other commonly performed nuclear medicine tests, and the potential radiation risks associated with (18)F-FLT PET imaging are within accepted limits.  (+info)

Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. (69/749)

The mechanism by which glucagon and cAMP analogues inhibit phosphatidylcholine biosynthesis was investigated in rat hepatocytes. The studies were facilitated by preparation of an antibody to a synthetic peptide (D-F-V-A-H-D-D-I-P-Y-S-S-A) corresponding to residues 164-176 of CTP:phosphocholine cytidylyl-transferase. The antibody, which was purified by affinity chromatography, quantitatively immunoprecipitated cytidylyltransferase from rat liver cytosol. Various analogues of cAMP had no effect on the labeling of cytidylyltransferase with 32Pi in rat hepatocytes. Nor did the cAMP analogues have any effect on the distribution of cytidylyltransferase between cytosol and membranes. These results indicate that the supply of CDP-choline does not limit phosphatidylcholine biosynthesis in hepatocytes treated with cAMP analogues. A decreased supply of diacylglycerol was considered as an alternative mechanism for inhibition of phosphatidylcholine biosynthesis. An approximately 30% decrease in diacylglycerol concentration was observed in hepatocytes treated with the cAMP analogues or glucagon, compared with controls. A similar decrease of phosphatidylcholine biosynthesis was observed. The cAMP-mediated decrease in diacylglycerol levels and inhibition of phosphatidylcholine biosynthesis were reversed by addition of 0.5-1.5 mM oleic acid to the treated hepatocytes. A correlation coefficient of 0.93 was calculated between the levels of diacylglycerol and the rate of phosphatidylcholine biosynthesis. In another approach, the diacylglycerol levels were increased by an inhibitor of diacylglycerol lipase (U-57908) which also reversed the cAMP effects on diacylglycerol levels and phosphatidylcholine biosynthesis. We conclude that the cAMP-mediated inhibition of phosphatidylcholine biosynthesis was not due to an effect on the phosphorylation of cytidylyltransferase. Instead, phosphatidylcholine biosynthesis appears to be inhibited due to a decreased level of diacylglycerol, a substrate for CDP-choline: 1,2-diacylglycerol cholinephosphotransferase.  (+info)

Differential low density lipoprotein receptor-dependent formation of eicosanoids in human blood-derived monocytes. (70/749)

We studied the ability of low density lipoproteins (LDLs) to provide arachidonic acid (AA) for eicosanoid biosynthesis in human blood-derived monocytes. When incubated in the presence of reconstituted LDL that contained cholesteryl [1-14C]arachidonate (recLDL-[14C]AA-CE), resting monocytes formed three labeled products of the prostaglandin (PG) H synthase pathway: 6-keto-PGF1 alpha, thromboxane B2, and PGE2. The amounts of these eicosanoids in response to recLDL-[14C]AA-CE were comparable to or exceeded those that were produced in response to the addition of 10 microM unesterified [1-14C]AA. By contrast, resting monocytes formed only small amounts of products of the 5-lipoxygenase pathway, leukotriene (LT) B4 and LTC4 from either recLDL-[14C]AA-CE or [14C]AA, indicating preferential utilization of AA in the PGH synthase reaction. However, they converted LDL-derived [14C]AA efficiently into LTB4 and LTC4, when they were first incubated with recLDL-[14C]AA-CE and subsequently stimulated with the chemotactic peptide N-formylmethionylleucylphenylalanine or the Ca2+ ionophore A23187. The classical LDL receptor pathway mediated the synthesis of all of the above eicosanoids from LDL but not from unesterified AA. These results demonstrate that the LDL receptor pathway preferentially promotes the synthesis of PGH synthase products in resting human blood-derived monocytes and that an additional mechanism is required to promote effective synthesis of 5-lipoxygenase pathway products from AA that originates in LDL cholesteryl esters.  (+info)

Release and fixation of CO2 by guinea-pig kidney tubules metabolizing aspartate. (71/749)

1. The metabolism of L-[U-14C]aspartate, L-[1-14C]aspartate and L-[4-14C]aspartate was studied in isolated guinea-pig kidney tubules. 2. Oxidation of C-1 plus that of C-4 of aspartate accounted for 90-92% of the CO2 released from aspartate, whereas oxidation of the inner carbon atoms of aspartate (which occurs beyond the 2-oxoglutarate dehydrogenase step) represented only 8-10% of aspartate carbon oxidation. 3. The formation of [1-14C]glutamine and [1-14C]glutamate from [1-14C]aspartate and [4-14C]aspartate indicated that about one-third of the oxaloacetate synthesized from aspartate underwent randomization at the level of fumarate. 4. With [U-14C]aspartate as substrate, the percentage of the C-1 of glutamate and glutamine found radiolabelled after 60 min of incubation was 92.7% and 47.5% in the absence and the presence of bicarbonate respectively. 5. That CO2 fixation occurred at high rates in the presence of bicarbonate was demonstrated by incubating tubules with aspartate plus [14C]bicarbonate; under this condition, the label fixed was found in C-1 of glutamate, glutamine and aspartate, as well as in C-4 of aspartate, demonstrating not only randomization of aspartate carbon but also aspartate resynthesis secondary to oxaloacetate cycling via phosphoenolpyruvate carboxykinase, pyruvate kinase and pyruvate carboxylase. 6. The importance of CO2 fixation in glutamine synthesis from aspartate is discussed in relation to the possible role of the guinea-pig kidney in systemic acid-base regulation in vivo.  (+info)

On the mechanism of the okadaic acid-induced inhibition of phosphatidylcholine biosynthesis in isolated rat hepatocytes. (72/749)

The mechanism of inhibition of phosphatidylcholine biosynthesis by okadaic acid was investigated in suspension cultures of isolated rat hepatocytes. Cells were pulsed with [methyl-3H]choline and chased in the absence or presence of 1 microM okadaic acid for up to 120 min. Phosphatidylcholine biosynthesis was inhibited after 15 min of chase. To see if okadaic acid altered the degree of phosphorylation of cytidylyltransferase (CT), hepatocytes were incubated with 32P(i) and chased in the absence or presence of okadaic acid. Okadaic acid caused a rapid (within 15 min) increase in the phosphorylation state of the cytosolic enzyme. Two-dimensional peptide map analysis revealed an increase in the phosphorylation of several peptides in okadaic acid-treated hepatocytes compared with controls. After 15 min of incubation of hepatocytes with okadaic acid, membrane CT activity was decreased and a corresponding increase in cytosolic CT activity was observed. In hepatocytes incubated with okadaic acid and oleate a correlation between membrane CT activity, diacylglycerol level, and phosphatidylcholine biosynthesis was observed. These data suggest that the concentration of diacylglycerol is responsible for the increase in membrane CT activity and subsequently phosphatidylcholine biosynthesis in oleate-treated cells. We postulate that the okadaic acid-induced decrease in phosphatidylcholine biosynthesis is due to an increase in the phosphorylation state of CT which promotes a translocation of CT activity from the membranes to the cytosol.  (+info)