Thrombotic thrombocytopenic purpura and autoimmunity: a tale of shadows and suspects. (1/320)

BACKGROUND AND OBJECTIVE: The key pathogenic feature of TTP is the formation of platelet aggregates within the microcirculation; however, the etiology of such aggregates has been elusive for years. A large amount of evidence points to an abnormal interaction between damaged vascular endothelium and platelets, although the cause of the primary microvascular endothelial cell injury is seldom clear. The autoimmune hypothesis often recurs, and this is based on a number of observations: the claimed superiority of plasma-exchange over plasma infusion, the anecdotal report of the presence of immunocomplexes and autoantibodies in TTP patients, the efficacy of the administration of corticosteroids and other immunosuppressant agents, and the concomitant occurrence of TTP in association with autoimmune diseases, especially systemic lupus erythematosus (SLE). This review will focus on the complex relationships between TTP and humoral autoimmunity; in particular, similarities and differences between TTP, SLE and antiphospholipid (aPL) antibodies syndrome, as well as the putative role of several other antibodies directed towards endothelial cells and/or platelets, including the recently discovered anti-CD36 antibodies and antivWF-cleaving metalloprotease, will be discussed. DESIGN AND METHODS: The authors have been involved in the study and treatment of TTP and autoimmune diseases for years; furthermore, the PubMed data base of the National Library of Congress has been extensively searched using the Internet. CONCLUSIONS: Although over the years evidence has increased in favor of the autoimmune hypothesis for TTP etiopathogenesis, TTP should not yet be considered an autoimmune disease. Autoantibodies should be regarded as only one of the many different insults which can trigger microvascular thrombosis even though the autoimmune theory of the pathogenesis of TTP is gaining more and more strength. As far as concerns the relationship between TTP, SLE and aPL antibodies-related disorders, these diseases should be distinguished on the basis of both different clinical presentations and accurate antibody screening, although this approach should definitely not delay the prompt start of treatment.  (+info)

Tissue uptake of circulating thrombopoietin is increased in immune-mediated compared with irradiated thrombocytopenic mice. (2/320)

We have previously demonstrated a significant inverse correlation between circulating thrombopoietin (TPO) levels and peripheral platelet (PLT) counts in patients with thrombocytopenia secondary to megakaryocytic hypoplasia but not in patients with immune thrombocytopenic purpura (ITP; Chang et al, Blood 88:3354, 1996). To test the hypothesis that the differences in the circulating TPO levels in these two types of thrombocytopenia are caused by differences in the total capacity of Mpl receptor-mediated TPO clearance, thrombocytopenia was induced in female CD-1 mice either by sublethal irradiation (irradiated) or rabbit antimouse PLT serum (RAMPS) for 1 day (1 d RAMPS) and 5 days (5 d RAMPS). A well-characterized murine model of autoimmune thrombocytopenic purpura, male (NZW x BXSB) F1 mice (W/B F1), was also included in this study. All thrombocytopenic mice and their controls received trace amounts of 125I-recombinant murine TPO (125I-rmTPO) intravenously and were killed 3 hours postinjection. Blood cell-associated radioactivity was significantly decreased in all 4 groups of thrombocytopenic mice. Significantly increased plasma and decreased whole spleen-associated radioactivity was observed in the irradiated group compared with controls (P <.05). While a lesser but still significant increase in plasma and decrease in whole spleen-associated radioactivity was observed in the 1 d RAMPS mice (P <.05), there were no significant differences between the 5 d RAMPS nor the W/B F1 male mice compared with controls, although whole spleen-associated radioactivity was higher in the W/B F1 male. A significant inverse correlation of plasma and whole spleen-associated radioactivity was demonstrated in W/B F1 male mice (r = -.91, n = 6, P <.05). There was also a decrease in bone (femur)/blood-associated radioactivity in the irradiated group compared with controls (P <.05), but a significant increase in 1 d and 5 d RAMPS mice (P <.01). Furthermore, the 125I-rmTPO uptake capacity within the spleen and marrow of immune thrombocytopenic mice appeared to be associated with a higher megakaryocytic mass when tissue samples were examined by light microscopy. Internalization of 125I-rmTPO by megakaryocytes and PLTs in the spleens and marrows of ITP mice was also demonstrated directly using electron microscopic autoradiography. Labeled PLTs were also found within splenic macrophages. Additionally, the mean PLT volumes of RAMPS mice were significantly higher than those of the control and irradiated mice (P <.05), as was the bound 125I-rmTPO (cpm) per million PLT (P <.05). Finally, significantly decreased 125I-rmTPO degradation products were only found in the plasma of the irradiated mice compared with control animals (P <.05). These data suggest that the lack of Mpl+ cells in the mice with thrombocytopenia secondary to megakaryocytic hypoplasia (irradiated) results in decreased uptake and degradation of TPO and higher circulating TPO levels. Furthermore, these data also suggest that, after a brief TPO surge in response to immune thrombocytopenia (1 d RAMPS), the lack of an inverse correlation of circulating TPO with PLT counts during steady-state immune thrombocytopenic mice (5 d RAMPS + W/B F1 male) is due, at least in part, to its uptake and degradation by the high PLT turnover and increased mass of megakaryocytes.  (+info)

Hypocomplementemia discloses genetic predisposition to hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: role of factor H abnormalities. Italian Registry of Familial and Recurrent Hemolytic Uremic Syndrome/Thrombotic Thrombocytopenic Purpura. (3/320)

Familial hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) carry a very poor outcome and have been reported in association with decreased serum levels of the third complement component (C3). Uncontrolled consumption in the microcirculation, possibly related to genetically determined deficiency in factor H--a modulator of the alternative pathway of complement activation--may account for decreased C3 serum levels even during disease remission and may predispose to intravascular thrombosis. In a case-control study by multivariate analysis, we correlated putative predisposing conditions, including low C3 serum levels, with history of disease in 15 cases reporting one or more episodes of familial HUS and TTP, in 25 age- and gender-matched healthy controls and in 63 case-relatives and 56 control-relatives, respectively. The relationship between history of disease, low C3, and factor H abnormalities was investigated in all affected families and in 17 controls. Seventy-three percent of cases compared with 16% of controls (P < 0.001), and 24% of case-relatives compared with 5% of control-relatives (P = 0.005) had decreased C3 serum levels. At multivariate analysis, C3 serum level was the only parameter associated with the disease within affected families (P = 0.02) and in the overall study population (P = 0.01). Thus, subjects with decreased C3 serum levels had a relative risk of HUS or TTP of 16.56 (95% confidence interval [CI], 1.66 to 162.39) within families and of 27.77 (95% CI, 2.44 to 314.19) in the overall population, compared to subjects with normal serum levels. Factor H abnormalities were found in four of the cases, compared with three of the healthy family members (P = 0.02) and none of the controls (P = 0.04) and, within families, factor H abnormalities were correlated with C3 reduction (P < 0.05). Reduced C3 clusters in familial HUS and TTP is likely related to a genetically determined deficiency in factor H and may predispose to the disease. Its demonstration may help identify subjects at risk in affected families.  (+info)

An uncommon case of late thrombotic thrombocytopenic purpura (42 months) after autologous peripheral blood stem cell (PBSC) transplantation in a child. (4/320)

Thrombotic thrombocytopenic purpura (TTP) is a serious complication following bone marrow transplantation (BMT). Therapeutic plasma exchange does not appear to be effective in its management in contrast to classical TTP. We report the case of a child with TTP 3 years after autologous PBSC transplantation, in whom remission was achieved by administration of cyclosporin A, after failure of plasmapheresis as primary treatment.  (+info)

von Willebrand factor proteolysis is deficient in classic, but not in bone marrow transplantation-associated, thrombotic thrombocytopenic purpura. (5/320)

Thrombotic thrombocytopenic purpura (TTP) after bone marrow transplantation (BMT) differs from classic TTP in its clinical course and therapy. A characteristic of classic TTP is the inhibition of a plasma protease that specifically cleaves von Willebrand factor (vWF), thus reducing its multimeric size. We investigated whether this protease was also inhibited in BMT-associated TTP. Plasma from patients with classic or BMT-associated TTP was incubated with recombinant vWF R834Q, a vWF mutant with enhanced sensitivity to the protease. The proteolysis of vWF multimers was analyzed and quantified on Western blot. Metalloprotease activity was strongly inhibited in the classic TTP patient group. However, metalloprotease activity was normal in the BMT-associated TTP patient group. The difference in activity between the two patient groups was highly significant (P =.0016). The results indicate that the etiologies of classic and BMT-associated TTP are indeed different and provide an explanation for the lack of success of plasma exchange in BMT-associated TTP.  (+info)

Review: infectious diseases and coagulation disorders. (6/320)

Infection, both bacterial and nonbacterial, may be associated with coagulation disorders, resulting in disseminated intravascular coagulation and multiorgan failure. In the last few decades a series of in vivo and in vitro studies has provided more insight into the pathogenetic mechanisms and the role of cytokines in these processes. Because of the growing interest in this field, the complexity of the subject, and the fact that many physicians must deal with a variety of infections, current data are reviewed on the association between infectious diseases and the coagulation system. Novel therapeutic intervention strategies that will probably become available in the near future are mentioned, along with those of special interest for infectious disorders for which only supportive care can be given.  (+info)

Unrecognized pattern of von Willebrand factor abnormalities in hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. (7/320)

Heterogeneous abnormalities in multimeric structure and fragmentation of endothelial-derived von Willebrand factor (vWF) have been reported in hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). This study was conducted to establish whether different patterns of vWF abnormalities were associated with different clinical syndromes. Plasmatic levels of vWF antigen (vWF:Ag), vWF release from endothelial cells (EC) exposed to patient sera, and vWF multimeric pattern were studied during episodes and again in remission in three groups of patients with severe forms of HUS and TTP paradigmatic of the most common clinical patterns of disease presentation: (1) plasma-responsive; (2) plasma-resistant; and (3) frequently relapsing. Plasma vWF:Ag and serum-induced vWF release from EC were increased in the acute phase of either plasma-responsive and plasma-resistant HUS and TTP, but normalized at remission only in plasma-responsive cases. Both indices were persistently normal in the relapsing forms. Enhanced vWF fragmentation as defined by disappearance of high molecular weight and increase in low molecular weight forms was a consistent finding of the acute phases, and always normalized in remission in all three groups. Unusually large vWF multimers were found exclusively in plasma of relapsing forms of HUS and TTP both during and between relapses. Enhanced levels of vWF:Ag and serum capability to induce vWF release in vitro are markers of disease activity and may reflect systemic endothelial injury and consequent activation. Their presence discriminates acute single-episode cases from relapsing forms and, when failing to normalize with plasma therapy, predicts plasma resistance. Enhanced low molecular weight multimers that closely paralleled disease activity suggest a permissive role of fragmented vWF in the formation of microvascular thrombi. Finally, finding of unusually large multimers exclusively in relapsing forms of HUS and TTP even between relapses, when no other clinical signs of disease activity could be detected, suggests that they cannot be the only factor in microvascular thrombosis.  (+info)

von Willebrand factor propeptide in vascular disorders: A tool to distinguish between acute and chronic endothelial cell perturbation. (8/320)

Before de novo synthesized von Willebrand factor (vWF) leaves the endothelial cell, it undergoes endoproteolytic cleavage of its propeptide (vW antigen II). The processed vWF and propeptide are either released constitutively or, following activation of the endothelium, released through the regulated pathway. In a recent study (Borchiellini et al, Blood 88:2951, 1996), we showed that the half-life of mature vWF and of its propeptide differ fourfold to fivefold. We postulated that the molar ratio of the propeptide to mature vWF could serve as a tool to assess the extent of endothelial cell activation under physiologic and clinical conditions. To test this hypothesis, we measured mature vWF and propeptide in patients with documented acute and chronic vascular disease, including patients with thrombotic thrombocytopenic purpura (TTP), acute septicemia, and diabetes mellitus. These data were compared with experimental conditions in healthy subjects in which perturbation of the endothelium was simulated by physical exercise or by administration of 1-deamino-8-D-arginine vasopressin (DDAVP) or endotoxin. In all individuals of the latter study group, both vWF and propeptide levels were elevated during the acute phase of the experimentally induced vascular perturbation; at later time points after stimulation, only vWF levels remained elevated. In patients with sepsis and TTP, both vWF and propeptide were elevated several-fold. Thus, this pattern can readily be explained in terms of acute perturbation of the endothelium. In contrast, in patients with diabetes mellitus propeptide levels were only slightly elevated, whereas vWF levels were elevated twofold to threefold. This pattern is a typical feature of chronic, low-grade activation of the endothelium. These observations support our hypothesis that measurement of both propeptide and vWF levels allows to discriminate between chronic and acute phases of endothelial cell activation in vivo. Measurement of only vWF is less indicative in this respect.  (+info)