Early steps in assembly of the yeast vacuolar H+-ATPase. (9/634)

Vacuolar proton-translocating ATPases are composed of a complex of integral membrane proteins, the Vo sector, attached to a complex of peripheral membrane proteins, the V1 sector. We have examined the early steps in biosynthesis of the yeast vacuolar ATPase by biosynthetically labeling wild-type and mutant cells for varied pulse and chase times and immunoprecipitating fully and partially assembled complexes under nondenaturing conditions. In wild-type cells, several V1 subunits and the 100-kDa Vo subunit associate within 3-5 min, followed by addition of other Vo subunits with time. Deletion mutants lacking single subunits of the enzyme show a variety of partial complexes, including both complexes that resemble intermediates in the assembly pathway of wild-type cells and independent V1 and Vo sectors that form without any apparent V1Vo subunit interaction. Two yeast sec mutants that show a temperature-conditional block in export from the endoplasmic reticulum accumulate a complex containing several V1 subunits and the 100-kDa Vo subunit during incubation at elevated temperature. This complex can assemble with the 17-kDa Vo subunit when the temperature block is reversed. We propose that assembly of the yeast V-ATPase can occur by two different pathways: a concerted assembly pathway involving early interactions between V1 and Vo subunits and an independent assembly pathway requiring full assembly of V1 and Vo sectors before combination of the two sectors. The data suggest that in wild-type cells, assembly occurs predominantly by the concerted assembly pathway, and V-ATPase complexes acquire the full complement of Vo subunits during or after exit from the endoplasmic reticulum.  (+info)

The membrane topology of proton-pumping Escherichia coli transhydrogenase determined by cysteine labeling. (10/634)

The membrane topology of proton-pumping nicotinamide-nucleotide transhydrogenase from Escherichia coli was determined by site-specific chemical labeling. A His-tagged cysteine-free transhydrogenase was used to introduce unique cysteines in positions corresponding to potential membrane loops. The cysteines were reacted with fluorescent reagents, fluorescein 5-maleimide or 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid, in both intact cells and inside-out vesicles. Labeled transhydrogenase was purified with a small-scale procedure using a metal affinity resin, and the amount of labeling was measured as fluorescence on UV-illuminated acrylamide gels. The difference in labeling between intact cells and inside-out vesicles was used to discriminate between a periplasmic and a cytosolic location of the residues. The membrane region was found to be composed of 13 helices (four in the alpha-subunit and nine in the beta-subunit), with the C terminus of the alpha-subunit and the N terminus of the beta-subunit facing the cytosolic and periplasmic sides, respectively. These results differ from previous models with regard to both number of helices and the relative location and orientation of certain helices. This study constitutes the first in which all transmembrane segments of transhydrogenase have been experimentally determined and provides an explanation for the different topologies of the mitochondrial and E. coli transhydrogenases.  (+info)

Comparison of H+-ATPase and Ca2+-ATPase suggests that a large conformational change initiates P-type ion pump reaction cycles. (11/634)

BACKGROUND: Structures have recently been solved at 8 A resolution for both Ca2+-ATPase from rabbit sarcoplasmic reticulum and H+-ATPase from Neurospora crassa. These cation pumps are two distantly related members of the family of P-type ATPases, which are thought to use similar mechanisms to generate ATP-dependent ion gradients across a variety of cellular membranes. We have undertaken a detailed comparison of the two structures in order to describe their similarities and differences as they bear on their mechanism of active transport. RESULTS: Our first important finding was that the arrangement of 10 transmembrane helices was remarkably similar in the two molecules. This structural homology strongly supports the notion that these pumps use the same basic mechanism to transport their respective ions. Despite this similarity in the membrane-spanning region, the cytoplasmic regions of the two molecules were very different, both in their disposition relative to the membrane and in the juxtaposition of their various subdomains. CONCLUSIONS: On the basis of the crystallization conditions, we propose that these two crystal structures represent different intermediates in the transport cycle, distinguished by whether cations are bound to their transport sites. Furthermore, we propose that the corresponding conformational change (E2 to E1 ) has two components: the first is an inclination of the main cytoplasmic mass by 20 degrees relative to the membrane-spanning domain; the second is a rearrangement of the domains comprising the cytoplasmic part of the molecules. Accordingly, we present a rough model for this important conformational change, which relays the effects of cation binding within the membrane-spanning domain to the nucleotide-binding site, thus initiating the transport cycle.  (+info)

Mutation of the mitochrondrially encoded ATPase 6 gene modeled in the ATP synthase of Escherichia coli. (12/634)

Defects of respiratory chain protein complexes and the ATP synthase are becoming increasingly implicated in human disease. Recently, mutations in the ATPase 6 gene have been shown to cause several different neurological disorders. The product of this gene is homologous to the a subunit of the ATP synthase of Escherichia coli. Here, mutations equivalent to those described in humans have been introduced into the a subunit of E. coli by site-directed mutagenesis, and the effects of these mutations on the ATPase activity, ATP synthesis and ability of the enzyme to pump protons studied in detail. The effects of the mutations varied considerably. The mutation L262P (9185 T-C equivalent) caused a 70% loss of ATP synthesis activity, reduced DCCD sensitivity, and lowered proton pumping activity. The L207P (8993 T-C equivalent) reduced ATP synthesis by 50%, affected DCCD sensitivity, while proton pumping was only marginally affected when measured by the standard AMCA quenching assay. The other mutations studied affected the functioning of the ATP synthase much less. The results confirm that modeling of these point mutations in the E. coli enzyme is a useful approach to determining how alterations in the ATPase 6 gene affect enzyme function and, therefore, how a pathogenic effect can be exerted.  (+info)

Cytological transformations associated with parietal cell stimulation: critical steps in the activation cascade. (13/634)

Cultured rabbit parietal cells were used to evaluate morphological responses to activators and inhibitors of HCl secretion. Immunofluorescence was used to localize the proton pump protein, H, K-ATPase, and the apical membrane-cytoskeletal linker protein, ezrin; fluorescent-labeled phalloidin was used as a marker of F-actin. Treatment of healthy control parietal cells with secretagogues resulted in exaggerated swelling of apical membrane vacuoles, presumably with the accumulation of HCl and water. Thus stimulation-associated swelling of apical vacuoles was blocked by inhibitors that work at various steps in the secretion-activation cascade. When secretion was blocked by agents that prevent the translocation of H,K-ATPase-rich tubulovesicles to apical membrane vacuoles (such as H2-receptor antagonists and protein kinase A inhibitors), the general resting morphology was maintained. ME-3407 (a functional analogue of wortmannin) was unique in preventing H, K-ATPase redistribution and effecting the delocalization of ezrin from apical membrane vacuoles. When secretion was blocked by agents that inhibit the H+ pump or induce H+ backflux, the translocation of H,K-ATPase to apical membrane vacuoles occurred but the large vacuolar swelling associated with HCl and H2O accumulation was greatly diminished. These data support the membrane recycling/recruitment hypothesis of HCl secretion in which H, K-ATPase-rich tubulovesicles are recruited from a cytoplasmic domain to the apical surface, and they are inconsistent with models proposing that the tubulovesicles, regardless of shape, are contiguous with the apical plasma membrane. These studies also demonstrate the utility of the parietal cell culture model in distinguishing a general site of action for various inhibitors and antisecretory agents.  (+info)

Essential requirement of cytosolic phospholipase A(2) for activation of the H(+) channel in phagocyte-like cells. (14/634)

The NADPH oxidase-producing superoxide is the major mechanism by which phagocytes kill invading pathogens. We previously established a model of cytosolic phospholipase A(2) (cPLA(2))-deficient differentiated PLB-985 cells (PLB-D cells) and demonstrated that cPLA(2)-generated arachidonic acid (AA) is essential for NADPH oxidase activation (Dana, R., Leto, T., Malech, H., and Levy, R. (1998) J. Biol. Chem. 273, 441-445). In the present study, we used this model to determine the physiological role of cPLA(2) in the regulation of both the H(+) channel and the Na(+)/H(+) antiporter and to study whether NADPH oxidase activation is regulated by either of these transporters. PLB-D cells and two controls: parent PLB-985 cells and PLB-985 cells transfected with the vector only (PLB cells) were differentiated using 1.25% Me(2)SO or 5 x 10(-8) M 1, 25-dihydroxyvitamin D(3). Activation of differentiated PLB cells resulted in a Zn(2+)-sensitive alkalization, indicating H(+) channel activity. In contrast, differentiated PLB-D cells failed to activate the H(+) channel, but the addition of exogenous AA fully restored this activity, indicating the role of cPLA(2) in H(+) channel activation. The presence of the H(+) channel inhibitor Zn(2+) caused significant inhibition of NADPH oxidase activity, suggesting a role of the H(+) channel in regulating oxidase activity. Na(+)/H(+) antiporter activity was stimulated in differentiated PLB-D cells, indicating that cPLA(2) does not participate in the regulation of this antiporter. These results establish an essential and specific physiological requirement of cPLA(2)-generated AA for activation of the H(+) channel and suggest the participation of this channel in the regulation of NADPH oxidase activity.  (+info)

The proteolipid of the A(1)A(0) ATP synthase from Methanococcus jannaschii has six predicted transmembrane helices but only two proton-translocating carboxyl groups. (15/634)

The proteolipid, a hydrophobic ATPase subunit essential for ion translocation, was purified from membranes of Methanococcus jannaschii by chloroform/methanol extraction and gel chromatography and was studied using molecular and biochemical techniques. Its apparent molecular mass as determined in SDS-polyacrylamide gel electrophoresis varied considerably with the conditions applied. The N-terminal sequence analysis made it possible to define the open reading frame and revealed that the gene is a triplication of the gene present in bacteria. In some of the proteolipids, the N-terminal methionine is excised. Consequently, two forms with molecular masses of 21,316 and 21,183 Da were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The molecular and biochemical data gave clear evidence that the mature proteolipid from M. jannaschii is a triplication of the 8-kDa proteolipid present in bacterial F(1)F(0) ATPases and most archaeal A(1)A(0) ATPases. Moreover, the triplicated form lacks a proton-translocating carboxyl group in the first of three pairs of transmembrane helices. This finding puts in question the current view of the evolution of H(+) ATPases and has important mechanistic consequences for the structure and function of H(+) ATPases in general.  (+info)

Time-resolved generation of a membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center. (16/634)

ba3-type cytochrome c oxidase purified from the thermophilic bacterium Thermus thermophilus has been reconstituted in phospholipid vesicles and laser flash-induced generation of a membrane potential by the enzyme has been studied in a microsecond/ms time scale with Ru(II)-tris-bipyridyl complex (RuBpy) as a photoreductant. Flash-induced single electron reduction of the aerobically oxidized ba3 by RuBpy results in two phases of membrane potential generation by the enzyme with tau values of about 20 and 300 microseconds at pH 8 and 23 degrees C. Spectrophotometric experiments show that oxidized ba3 reacts very poorly with hydrogen peroxide or any of the other exogenous heme iron ligands studied like cyanide, sulfide and azide. At the same time, photoreduction of the enzyme by RuBpy triggers the electrogenic reaction with H2O2 with a second order rate constant of approximately 2 x 10(3) M-1 s-1. The data indicate that single electron reduction of ba3 oxidase opens the binuclear center of the enzyme for exogenous ligands. The fractional contribution of the protonic electrogenic phases induced by peroxide in cytochrome ba3 is much less than in bovine oxidase, pointing to a possibility of a different electrogenic mechanism of the ba3 oxidase as compared to the oxidases of the aa3-type.  (+info)