ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. (1/215)

ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  (+info)

Activation of p90RSK and cAMP response element binding protein in stimulated neutrophils: novel effects of the pyridinyl imidazole SB 203580 on activation of the extracellular signal-regulated kinase cascade. (2/215)

Neutrophils stimulated with the chemoattractant FMLP or the phorbol ester PMA are known to exhibit activation of a 90-kDa renaturable protein kinase. Activation of this kinase was maximal at approximately 1-3 min after cell stimulation and the time course for activation was similar to that of the extracellular-regulated kinases (ERKs) and p38-mitogen activated protein kinase (p38MAPK). Compounds that block activation of ERK-1/2 (PD 98059) or that inhibit the activity of p38MAPK (SB 203580) blocked activation of this 90-kDa kinase. SB 203580 is a highly selective inhibitor of p38MAPK in vitro and is under intense study as a lead compound for developing novel anti-inflammatory agents. However, we demonstrate that SB 203580 at concentrations >/=10 microM can also inhibit activation of ERK-1/2 in neutrophils. An Ab to the protein kinase p90RSK2 (also referred to as MAPKAP-K1b, or p90rsk) immunoprecipitated the active 90-kDa kinase from lysates of stimulated neutrophils. No activity was observed for this enzyme in immunoprecipitates obtained from unstimulated cells, and the amounts of activity were markedly reduced if the cells were treated with PD 98059 or SB 203580 before stimulation. Neutrophils stimulated with FMLP exhibited phosphorylation of the cAMP response element binding protein (CREB), and this reaction was inhibited by SB 203580 and PD 98059. These data establish that the renaturable 90-kDa protein kinase is p90RSK2 and that CREB may be a substrate for this enzyme in these cells. Novel effects of compound SB 203580 on stimulated neutrophils are also described.  (+info)

Renaturation of recombinant Treponema pallidum rare outer membrane protein 1 into a trimeric, hydrophobic, and porin-active conformation. (3/215)

We have previously observed that while native Treponema pallidum rare outer membrane protein 1 (Tromp1) is hydrophobic and has porin activity, recombinant forms of Tromp1 do not possess these properties. In this study we show that these properties are determined by conformation and can be replicated by proper renaturation of recombinant Tromp1. Native Tromp1, but not the 47-kDa lipoprotein, extracted from whole organisms by using Triton X-114, was found to lose hydrophobicity after treatment in 8 M urea, indicating that Tromp1's hydrophobicity is conformation dependent. Native Tromp1 was purified from 0.1% Triton X-100 extracts of whole organisms by fast-performance liquid chromatography (FPLC) and shown to have porin activity in planar lipid bilayers. Cross-linking studies of purified native Tromp1 with an 11 A cross-linking agent showed oligomeric forms consistent with dimers and trimers. For renaturation studies of recombinant Tromp1 (rTromp1), a 31,109-Da signal-less construct was expressed in Escherichia coli and purified by FPLC. FPLC-purified rTromp1 was denatured in 8 M urea and then renatured in the presence of 0.5% Zwittergent 3,14 during dialysis to remove the urea. Renatured rTromp1 was passed through a Sephacryl S-300 gel exclusion column previously calibrated with known molecular weight standards. While all nonrenatured rTromp1 eluted from the column at approximately the position of the carbonic anhydrase protein standard (29 kDa), all renatured rTromp1 eluted at the position of the phosphorylase b protein standard (97 kDa), suggesting a trimeric conformation. Trimerization was confirmed by using an 11 A cross-linking agent which showed both dimers and trimers similar to that of native Tromp1. Triton X-114 phase separations showed that all of renatured rTromp1, but none of nonrenatured rTromp1, phase separated exclusively into the hydrophobic detergent phase, similar to native Tromp1. Circular dichroism of nonrenatured and renatured rTromp1 showed a marked loss in alpha-helical secondary structure of renatured rTromp1 compared to the nonrenatured form. Finally, renatured rTromp1, but not the nonrenatured form, showed porin activity in planar liquid bilayers. These results demonstrate that proper folding of rTromp1 results in a trimeric, hydrophobic, and porin-active conformation similar to that of the native protein.  (+info)

Effects of macromolecular crowding on protein folding and aggregation. (4/215)

We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  (+info)

Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. (5/215)

We systematically analyzed the capability of the major cytosolic chaperones of Escherichia coli to cope with protein misfolding and aggregation during heat stress in vivo and in cell extracts. Under physiological heat stress conditions, only the DnaK system efficiently prevented the aggregation of thermolabile proteins, a surprisingly high number of 150-200 species, corresponding to 15-25% of detected proteins. Identification of thermolabile DnaK substrates by mass spectrometry revealed that they comprise 80% of the large (>/=90 kDa) but only 18% of the small (+info)

Stress-associated endoplasmic reticulum protein 1 (SERP1)/Ribosome-associated membrane protein 4 (RAMP4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. (6/215)

Application of differential display to cultured rat astrocytes subjected to hypoxia allowed cloning of a novel cDNA, termed stress-associated endoplasmic reticulum protein 1 (SERP1). Expression of SERP1 was enhanced in vitro by hypoxia and/or reoxygenation or other forms of stress, causing accumulation of unfolded proteins in endoplasmic reticulum (ER) stress, and in vivo by middle cerebral artery occlusion in rats. The SERP1 cDNA encodes a 66-amino acid polypeptide which was found to be identical to ribosome-associated membrane protein 4 (RAMP4) and bearing 29% identity to yeast suppressor of SecY 6 protein (YSY6p), suggesting participation in pathways controlling membrane protein biogenesis at ER. In cultured 293 cells subjected to ER stress, overexpression of SERP1/RAMP4 suppressed aggregation and/or degradation of newly synthesized integral membrane proteins, and subsequently, facilitated their glycosylation when the stress was removed. SERP1/RAMP4 interacted with Sec61alpha and Sec61beta, which are subunits of translocon, and a molecular chaperon calnexin. Furthermore, Sec61alpha and Sec61beta, but not SERP1/RAMP4, were found to associate with newly synthesized integral membrane proteins under stress. These results suggest that stabilization of membrane proteins in response to stress involves the concerted action of a rescue unit in the ER membrane comprised of SERP1/RAMP4, other components of translocon, and molecular chaperons in ER.  (+info)

Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. (7/215)

Elongation factor G(EF-G) and initiation factor 2 (IF2) are involved in the translocation of ribosomes on mRNA and in the binding of initiator tRNA to the 30 S ribosomal subunit, respectively. Here we report that the Escherichia coli EF-G and IF2 interact with unfolded and denatured proteins, as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-G and IF2 promote the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. They prevent the aggregation of citrate synthase under heat shock conditions, and they form stable complexes with unfolded proteins such as reduced carboxymethyl alpha-lactalbumin. Furthermore, the EF-G and IF2-dependent renaturations of citrate synthase are stimulated by GTP, and the GTPase activity of EF-G and IF2 is stimulated by the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. The concentrations at which these chaperone-like functions occur are lower than the cellular concentrations of EF-G and IF2. These results suggest that EF-G and IF2, in addition to their role in translation, might be implicated in protein folding and protection from stress.  (+info)

cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. (8/215)

Mos1 and other mariner / Tc1 transposons move horizon-tally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10(-3)/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis -acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein over-expression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the 'natural' Mos1 and 'reconstructed' Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naive population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.  (+info)