Transglutaminase cross-linking properties of the small proline-rich 1 family of cornified cell envelope proteins. Integration with loricrin. (1/217)

Small proline-rich 1 (SPR1) proteins are important for barrier function in stratified squamous epithelia. To explore their properties, we expressed in bacteria a recombinant human SPR1 protein and isolated native SPR1 proteins from cultured mouse keratinocytes. By circular dichroism, they possess no alpha or beta structure but have some organized structure associated with their central peptide repeat domain. The transglutaminase (TGase) 1 and 3 enzymes use the SPR1 proteins as complete substrates in vitro but in different ways: head domain A sequences at the amino terminus were used preferentially for cross-linking by TGase 3, whereas those in head domain B sequences were used for cross-linking by TGase 1. The TGase 2 enzyme cross-linked SPR1 proteins poorly. Together with our data base of 141 examples of in vivo cross-links between SPRs and loricrin, this means that both TGase 1 and 3 are required for cross-linking SPR1 proteins in epithelia in vivo. Double in vitro cross-linking experiments suggest that oligomerization of SPR1 into large polymers can occur only by further TGase 1 cross-linking of an initial TGase 3 reaction. Accordingly, we propose that TGase 3 first cross-links loricrin and SPRs together to form small interchain oligomers, which are then permanently affixed to the developing CE by further cross-linking by the TGase 1 enzyme. This is consistent with the known consequences of diminished barrier function in TGase 1 deficiency models.  (+info)

Molecular interactions of Porphyromonas gingivalis fimbriae with host proteins: kinetic analyses based on surface plasmon resonance. (2/217)

Fimbriae of Porphyromonas gingivalis are thought to play an important role in the colonization and invasion of periodontal tissues. In this study, we analyzed the interactions of P. gingivalis fimbriae with human hemoglobin, fibrinogen, and salivary components (i.e., proline-rich protein [PRP], proline-rich glycoprotein [PRG], and statherin) based on surface plasmon resonance (SPR) spectroscopy with a biomolecular interaction analyzing system (BIAcore). The real-time observation showed that the fimbriae interacted more quickly with hemoglobin and PRG than with other proteins and more intensely with fibrinogen. The significant association constant (ka) values obtained by BIAcore demonstrated that the interactions between fimbriae and these host proteins are specific. These estimated Ka values were not too different; however, the Ka values for hemoglobin (2.43 x 10(6)) and fibrinogen (2.16 x 10(6)) were statistically greater than those for the salivary proteins (1.48 x 10(6) to 1.63 x 10(6)). The Ka value of anti-fimbriae immunoglobulin G for fimbriae was estimated to be 1. 22 x 10(7), which was 6.55-fold higher than the mean Ka value of the host proteins. Peptide PRP-C, a potent inhibitor of PRP-fimbriae interaction, dramatically inhibited fimbrial association to PRP and PRG and was also inhibitory against other host proteins by BIAcore. The binding of fimbriae to these proteins was also evaluated by other methods with hydroxyapatite beads or polystyrene microtiter plates. The estimated binding abilities differed considerably, depending on the assay method that was used. It was noted that the binding capacity of PRP was strongly diminished by immobilization on a polystyrene surface. Taken together, these findings suggest that P. gingivalis fimbriae possess a strong ability to interact with the host proteins which promote bacterial adherence to the oral cavity and that SPR spectroscopy is a useful method for analyzing specific protein-fimbriae interactions.  (+info)

Expression and genetic analysis of prtb, a gene that encodes a highly conserved proline-rich protein expressed in the brain. (3/217)

A mouse gene, designated prtb (proline codon-rich transcript, brain expressed) was identified and characterized from a gene trap embryonic stem cell line. It encodes a proline-rich protein of 168 amino acids that shares 99% amino acid sequence identity with its human homologue and is located on the distal region of mouse chromosome 15. To determine the expression pattern and function of prtb, mice that carry the prtb(gt) allele were generated. During embryogenesis,prtb gene expression as revealed by beta-galactosidase (beta-gal) marker gene activity was highly regulated. Between embryonic day (E) 11.5 and E12.5, beta-gal activity was restricted to the developing heart. From E13.5 on, expression in the heart was extinguished. However, very strong beta-gal activity could be detected in the brains of adult mice, suggesting a role for this gene in brain function. Mice homozygous for the mutation were viable, fertile, and did not display any obvious abnormalities. This could be due to functional redundancy as Northern blot hybridization analysis clearly demonstrated that prtb(gt) is likely to be a null allele.  (+info)

Periderm cells form cornified cell envelope in their regression process during human epidermal development. (4/217)

Terminally differentiated stratified squamous epithelium forms a lining of the plasma membrane called the cornified cell envelope, a thick layer of several covalently cross-linked precursor proteins including involucrin, small proline-rich proteins, and loricrin. Their cross-linking isodipeptide bonds are formed by epidermal transglutaminases 1-3. Material from lamellar granules is attached on the extracellular surface of corneocytes during the keratinization process. The formation of cornified cell envelope and sequential expression of major cornified cell envelope precursor proteins, transglutaminases, and 25 kDa lamellar granule-associated protein were studied in human embryonic and fetal skin. Ultrastructurally, membrane thickening has already started in periderm cells of the two-layered epidermis and an electron-dense, thickened cell envelope similar to cornified cell envelope in adult epidermis is observed in periderm cells at the three-layered and later stages of skin development. In the two-layered epidermis (49-65 d estimated gestational age), immunoreactivities of involucrin, small proline-rich proteins, all the transglutaminases, and lamellar granule-associated protein were present only in the periderm. In the three-layered epidermis and thereafter (66-160 d estimated gestational age), loricrin became positive in the periderm cells, transglutaminases extended to the entire epidermis, and lamellar granule-associated protein was detected in intermediate cells as well as periderm cells. Immunoelectron microscopy demonstrated that both major cornified cell envelope precursor proteins, involucrin and loricrin, were restricted to the cornified cell envelope in periderm cells at this stage of development. After 160 d estimated gestational age, the periderm had disappeared and cornified cell envelope proteins and lamellar granule-associated proteins were expressed in the spinous, granular, and cornified cells and transglutaminases were detected in the entire epidermis. These findings indicate that cornified cell envelope precursor proteins, transglutaminases, and lamellar granule-associated proteins are expressed in coordination in periderm cells during human epidermal development and suggest that periderm cells form cornified cell envelope in the process of regression.  (+info)

Secretion of functional salivary peptide by Streptococcus gordonii which inhibits fimbria-mediated adhesion of Porphyromonas gingivalis. (5/217)

Porphyromonas gingivalis, a putative periodontopathogen, can bind to human salivary components with its fimbriae. We have previously shown that fimbriae specifically bind to a peptide domain shared by a major salivary component, i.e., proline-rich (glyco)proteins (PRPs). The synthetic domain peptide PRP-C (pPRP-C) significantly inhibits the fimbrial binding to PRPs. In this study, a recombinant strain of Streptococcus gordonii secreting pPRP-C was generated as a model of a possible approach to prevent the oral colonization by the pathogen. A duplicate DNA fragment (prpC) encoding pPRP-C was obtained by self-complementary annealing of synthetic oligonucleotides. prpC was connected downstream to a promoter and a gene encoding a signal peptide of Streptococcus downei glucosyltransferase I in frame. The linked fragments were inserted into the plasmid pMNK-4 derived from pVA838. The constructed plasmid was inserted to produce the transformant S. gordonii G9B, which then successfully secreted recombinant pPRP-C (r-pPRP-C) of the expected size. The concentrated bacterial culture supernatant containing r-pPRP-C inhibited the binding of P. gingivalis cells and fimbriae to PRP1 in a dose-dependent manner up to 72 and 77%, respectively. The r-pPRP-C concentrate also inhibited the coaggregation of P. gingivalis with various streptococcal strains as effectively as synthetic pPRP-C in a dose-dependent manner. Collectively, pPRP-C was found to be able to prevent P. gingivalis adherence to salivary receptor protein and plaque-forming bacteria. These results suggest that this recombination approach with a nonperiodontopathic bacterium may be suitable for the therapeutic prevention of P. gingivalis adherence to the oral cavity.  (+info)

Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6. (6/217)

The Cmv1 locus controls NK cell-mediated resistance to infection with murine CMV. Our recent genetic analysis of backcross mice demonstrated that the NK gene complex (NKC)-linked Cmv1 locus should reside between the Ly49 and Prp gene clusters on distal mouse chromosome 6. We have aligned yeast artificial chromosome (YAC) inserts in a contig spanning the interval between the Ly49 and Prp gene clusters. This YAC contig includes 13 overlapping YAC inserts that span more than 2 megabases (Mb) in C57BL/6 (B6) mice. Since we have identified genomic clones that span the Ly49-Prp gene region, we hypothesize that at least one should contain the Cmv1 locus. To narrow the Cmv1 critical region, we developed novel NKC genetic markers and used these to genotype informative backcross and intra-NKC recombinant congenic mouse DNA samples. These data suggest that Cmv1 resides on a single YAC insert within an interval that corresponds to a physical distance of approximately 390 kb. This high resolution, integrated physical and genetic NKC map will facilitate identification of Cmv1 and other NKC-linked loci that regulate NK cell-mediated immunity.  (+info)

Transglutaminase crosslinking and structural studies of the human small proline rich 3 protein. (7/217)

The cell envelope (CE) is a vital structure for barrier function in terminally differentiated dead stratified squamous epithelia. It is assembled by transglutaminase (TGase) cross-linking of several proteins, including SPR3 in certain specialized epithelia normally subjected to mechanical trauma. We have expressed recombinant human SPR3 in order to study its cross-linking properties. It serves as a complete substrate for, and is cross-linked at similar efficiencies by, the three enzymes (TGases 1, 2 and 3) that are widely expressed in many epithelia. Multiple adjacent glutamines (4, 5, 16, 17, 18, 19 and 167) and lysines (6, 21, 164, 166 and 168) of only head and tail domain sequences are used for cross-linking. However, each enzyme preferentially uses certain residues on the head domain. Moreover, our in vitro data suggest a defined temporal order of cross-linking of SPR3 in vivo: It is first cross-linked by TGase 3 into short intra- and inter-chain oligomers which are later further cross-linked to the CE by TGase 1. To investigate the absence of cross-linking in the central domain (e.g. lysine in position 2 of each of the 16 repeats) we performed structural studies on recombinant SPR3 and on a synthetic peptide containing three repeats of the central domain. 2D H-1 NMR spectroscopy, TOCSY and ROESY, shows strong and medium intensity NOEs connectivities along the amino acid sequence with one weak long range NOE contact between Thr and Cys of subsequent repeats. Distance geometry computation on the basis of intensities of NOEs found generated 50 compatible structures grouped in three main families differing by the number of H-bonds. These measurements were repeated at different concentrations of trifluoroethanol (TFE)-water mixture, an alpha-helical promoting solvent, in order to check the stability of the conformations determined; no changes were observed up to 50% TFE in solution. Also temperature changes did not produce any variation in the ROESY spectrum in the same condition as above. The NMR and circular dichroism data strongly indicate the presence of an ordered (not alpha-helix nor beta-sheet) highly flexible structure in the eight amino acids repetitive units of SPR3, confirming the prediction of one possible beta-turn per each repeating unit. Thus, biochemical and biophysical data, strongly support SPR3 to function as a flexible cross-bridging protein to provide tensile strength or rigidity to the CE of the stratified squamous epithelia in which it is expressed.  (+info)

Conservation of the central proline-rich (PxxP) motifs of human immunodeficiency virus type 1 Nef protein during the disease progression in two hemophiliac patients. (8/217)

The nef gene is considered to play a crucial role in the development of acquired immunodeficiency syndrome (AIDS). In this study, we analyzed the sequence of nef quasispecies obtained from replication-competent HIV-1 isolates from two Japanese hemophiliac patients infected with HIV-1. At least 10 nef clones were isolated at each time point and a total of 75 individual nef quasispecies were sequenced. We observed a gradual increase in genetic diversity of the nef gene over time. Among the various functional regions of Nef protein, myristoylation site and the central PXXP (SH3 ligand) motifs were well conserved. The scattered regions responsible for downregulation of CD4 and class I MHC were also conserved. These data suggest that these functions of Nef may be involved throughout the disease process.  (+info)