Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia. (65/75222)

Previous work has shown that there is a positive correlation between the induction of Hsp70 and its transient nuclear localization and the acquisition and loss of induced thermotolerance in postimplantation rat embryos. To determine whether Hsp70 is sufficient to induce thermotolerance in postimplantation mammalian embryos, we used a transgenic mouse in which the normally strictly inducible Hsp70 is constitutively expressed in the embryo under the control of a beta-actin promoter. Day 8.0 mouse embryos heterozygous for the Hsp70 transgene were not protected from the embryotoxic effects of hyperthermia (43 degrees C); however, homozygous embryos, expressing approximately twice as much Hsp70 as heterozygous embryos, were partially protected (increased embryo viability) from the embryolethal effects of hyperthermia. Although the viability of transgenic embryos was significantly increased compared with that of nontransgenic embryos, this protection did not extend to embryo growth and development. To determine whether the failure to achieve a more robust protection was related to the expression of insufficient Hsp70 in transgenic embryos, we undertook experiments to determine whether the level of Hsp70 correlated with the level of thermotolerance induced by various lengths of a 41 degrees C heat shock. A 41 degrees C, 5-minute heat shock failed to induce Hsp70 or thermotolerance, a 41 degrees C, 15-minute heat shock induced Hsp70 and a significant level of thermotolerance, while a 41 degrees C, 60-minute heat shock induced an even higher level of Hsp70 as well as a higher level of thermotolerance. Quantitation of Hsp70 levels indicated that thermotolerance was associated with levels of Hsp70 of 820 pg/microg embryo protein or greater. Subsequent quantitation of the amount of Hsp70 expressed in homozygous transgenic embryos indicated a level of 577 pg/microg embryo protein, that is, a level below that associated with induced thermotolerance. Overall, results presented indicate that Hsp70 does play a direct role in the induction of thermotolerance in postimplantation mouse embryos; however, the level of thermotolerance is dependent on the level of Hsp70 expressed.  (+info)

Embryological study of a T/t locus mutation (tw73) affecting trophectoderm development. (66/75222)

Mouse embryos homozygous for the recessive lethal mutation tw73 show specific defects in trophectoderm shortly after implantation. The trophectoderm and ectoplacental cone fail to form the usual close association with the uterine decidua, and proliferation is markedly reduced. The embryo proper ceases to develop beyond the two-layered stage and degenerates and dies within 5 days of implantation.  (+info)

Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. (67/75222)

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.  (+info)

Effect of vitamin A and beta carotene supplementation on women's health.(68/75222)

 (+info)

Double blind, cluster randomised trial of low dose supplementation with vitamin A or beta carotene on mortality related to pregnancy in Nepal. The NNIPS-2 Study Group. (69/75222)

OBJECTIVE: To assess the impact on mortality related to pregnancy of supplementing women of reproductive age each week with a recommended dietary allowance of vitamin A, either preformed or as beta carotene. DESIGN: Double blind, cluster randomised, placebo controlled field trial. SETTING: Rural southeast central plains of Nepal (Sarlahi district). SUBJECTS: 44 646 married women, of whom 20 119 became pregnant 22 189 times. INTERVENTION: 270 wards randomised to 3 groups of 90 each for women to receive weekly a single oral supplement of placebo, vitamin A (7000 micrograms retinol equivalents) or beta carotene (42 mg, or 7000 micrograms retinol equivalents) for over 31/2 years. MAIN OUTCOME MEASURES: All cause mortality in women during pregnancy up to 12 weeks post partum (pregnancy related mortality) and mortality during pregnancy to 6 weeks postpartum, excluding deaths apparently related to injury (maternal mortality). RESULTS: Mortality related to pregnancy in the placebo, vitamin A, and beta carotene groups was 704, 426, and 361 deaths per 100 000 pregnancies, yielding relative risks (95% confidence intervals) of 0. 60 (0.37 to 0.97) and 0.51 (0.30 to 0.86). This represented reductions of 40% (P<0.04) and 49% (P<0.01) among those who received vitamin A and beta carotene. Combined, vitamin A or beta carotene lowered mortality by 44% (0.56 (0.37 to 0.84), P<0.005) and reduced the maternal mortality ratio from 645 to 385 deaths per 100 000 live births, or by 40% (P<0.02). Differences in cause of death could not be reliably distinguished between supplemented and placebo groups. CONCLUSION: Supplementation of women with either vitamin A or beta carotene at recommended dietary amounts during childbearing years can lower mortality related to pregnancy in rural, undernourished populations of south Asia.  (+info)

Marmoset species variation in the humoral antibody response: in vivo and in vitro studies. (70/75222)

A comparison of the in vivo and in vitro antibody response capabilities of two marmoset species, Saguinus fuscicollis and Saguinus oedipus oedipus, revealed the former to be superior in elaborating humoral antibody. In vivo challenges with Escherichia coli lipopolysaccharide (LPS) and Salmonella typhi flagella consistently yielded higher antibody titres in S. fuscicollis; indeed, with LPS antigen, multiple inoculations of S.o. oedipus marmosets led ultimately to a decrease in antibody formation, in contrast to the anamnestic response of S. fuscicollis. This species differential in immune competence was also suggested in the in vitro stimulation of peripheral blood leucocytes (PBL) and spleen cells with sheep red blood cells (RBC). None of 55 S.o. oedipus PBL cultures and 49 of 89 (55%) S. fuscicollis cultures responded to the test antigen. A similar differential in response to sheep RBC was noted with the spleen cells of each species, although this report contrasts the antibody-forming potential of two marmoset species, a comparison of the immunological response profile of marmosets to those of other laboratory animals challenged with similar antigens suggests these primates may be relatively incompetent. The possible relationship between the haemopoietic chimerism of marmosets and a diminished immune competence is discussed.  (+info)

RT-PCR quantification of AHR, ARNT, GR, and CYP1A1 mRNA in craniofacial tissues of embryonic mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. (71/75222)

C57BL/6N mouse embryos exposed to hydrocortisone (HC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) develop cleft palate. An interaction between these agents produces clefts at doses which alone are not teratogenic. The glucocorticoid receptor (GR) and dioxin receptor (AhR) mediated these responses and their gene expression was altered by TCDD and/or HC in palates examined on gestation day (GD) 14 by Northern blot analysis and in situ hybridization. The present study quantifies AhR, AhR nuclear translocator (ARNT), and GR mRNA at 4, 12, 24, and 48 h after exposure (time 0 = dose administration at 8 A.M. on gestation day 12) on GD12 to TCDD (24 micrograms/kg), HC (100 mg/kg) or HC (25 mg/kg) + TCDD (3 micrograms/kg). The induction of CYP1A1 mRNA was also quantified at 2, 4, 6, 12, 24, and 48 h for control and TCDD-exposed samples. Total RNA was prepared from midfacial tissue of 4-6 embryos/litter at each time and dose. An RNA internal standard (IS) for each gene was synthesized, which included the gene's primer sequences separated by a pUC19 plasmid sequence. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on total RNA + IS using a range of 5-7 IS concentrations across a constant level of total RNA. PCR products were separated in gels (mRNA and IS-amplified sequences differed by 30-50 bases), ethidium bromide-stained, imaged (Hamamatsu Photonics Systems, Bridgewater, NJ), and quantified with NIH Image. CYP1A1 mRNA was significantly induced in the TCDD-exposed samples at all time points examined (p = 0.005 at 2 h and 0.001 after 2 h). During palatal shelf outgrowth on GD12, AhR mRNA levels increased significantly and this was not affected by treatment with TCDD or HC + TCDD. A significant increase in GR was detected at 24 h (p < 0.05) and this was unaffected by any of the exposures. Expression of ARNT increased at 12 h (p < 0.001); however, treatment with HC or HC + TCDD blocked this increase (p < 0.05). At 24 h, the TCDD-treated embryos had significantly lower ARNT mRNA compared with controls (p < 0.001). The relative overall expression level of the genes was AhR > ARNT > GR. Within individuals, expression of AhR and/or ARNT was highly correlated with GR level. In conclusion, CYP1A1 mRNA was expressed in developing craniofacial tissue and was highly induced by TCDD exposure. AhR, ARNT, and GR mRNA are upregulated in early palatogenesis, although not on the same schedule. The TCDD-induced decrease in ARNT at 24 h after dosing and the HC and HC + TCDD-induced delay in upregulation of ARNT may affect the dynamics of heterodimer formation between AhR and ARNT. The changes in ARNT mRNA level could also affect availability of this transcriptional regulator to interact with other potential partners, and these effects, separately or in combination, may be involved in disruption of normal embryonic development.  (+info)

Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. (72/75222)

The aryl hydrocarbon receptor (AhR) mediates many of the biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and transcriptional activation of genes encoding a number of xenobiotic metabolizing enzymes. Prenatal exposure of mice to TCDD causes severe alterations in embryo and fetal development, including hydronephrosis and cleft palate. However, the mechanisms underlying these effects are unclear. In this work, the teratogenicity of TCDD in AhR-null mice was evaluated to determine if this effect is mediated by the AhR. Homozygous wild-type (+/+) or AhR-null (-/-) female mice were mated with males of the same genotype overnight. On gestation day (GD)-10, mice were intubated orally with either corn oil (vehicle control) or 25 micrograms/kg TCDD. Fetuses were examined on GD18 for visceral and skeletal alterations. For non-TCDD-exposed litters, all developmental endpoints were comparable between genotypes, with the exception of a lower incidence of large interfrontal bones in (-/-) mice. For TCDD-exposed litters, (+/+) fetuses had a significantly greater incidence of cleft palate, hydronephrosis, small kidneys, tortuous ureters and greater dilation of the renal pelves and ureters compared to (-/-) fetuses. Interestingly, an increased resorption rate was observed in (-/-) fetuses exposed to TCDD. Results from this work demonstrate that fetal development per se is generally unaffected by the absence of the AhR or that other genes may have compensated for the loss of the AhR. More importantly, these data indicate that the AhR mediates TCDD-induced teratogenicity. Further, since a higher percentage of resorptions was observed in (-/-) litters from TCDD-treated dams, it is possible that AhR-independent mechanisms contribute to TCDD-induced developmental toxicity.  (+info)