A new group of hepadnaviruses naturally infecting orangutans (Pongo pygmaeus). (1/224)

A high prevalence (42.6%) of hepatitis B virus (HBV) infection was suspected in 195 formerly captive orangutans due to a large number of serum samples which cross-reacted with human HBV antigens. It was assumed that such viral infections were contracted from humans during captivity. However, two wild orangutans were identified which were HBV surface antigen positive, indicating that HBV or related viruses may be occurring naturally in the orangutan populations. Sequence analyses of seven isolates revealed that orangutans were infected with hepadnaviruses but that these were clearly divergent from the six known human HBV genotypes and those of other nonhuman hepadnaviruses reported. Phylogenetic analyses revealed geographic clustering with Southeast Asian genotype C viruses and gibbon ape HBV. This implies a common origin of infection within this geographic region, with cross-species transmission of hepadnaviruses among hominoids.  (+info)

Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. (2/224)

BACKGROUND: Endogenous retroviruses contribute to the evolution of the host genome and can be associated with disease. Human endogenous retrovirus K (HERV-K) is related to the mouse mammary tumor virus and is present in the genomes of humans, apes and cercopithecoids (Old World monkeys). It is unknown how long ago in primate evolution the full-length HERV-K proviruses that are in the human genome today were formed. RESULTS: Ten full-length HERV-K proviruses were cloned from the human genome. Using provirus-specific probes, eight of the ten were found to be present in a genetically diverse set of humans but not in other extant hominoids. Intact preintegration sites for each of these eight proviruses were present in the apes. A ninth provirus was detected in the human, chimpanzee, bonobo and gorilla genomes, but not in the orang-utan genome. The tenth was found only in humans, chimpanzees and bonobos. Complete sequencing of six of the human-specific proviruses showed that full-length open reading frames for the retroviral protein precursors Gag-Pro-Pol or Env were each present in multiple proviruses. CONCLUSIONS: At least eight full-length HERV-K genomes that are in the human germline today integrated after humans diverged from chimpanzees. All of the viral open reading frames and cis-acting sequences necessary for HERV-K replication must have been intact during the recent time when these proviruses formed. Multiple full-length open reading frames for all HERV-K proteins are present in the human genome today.  (+info)

Coxsackievirus B4 myocarditis in an orangutan. (3/224)

A 37-year-old female orangutan died at the zoological garden. Autopsy examination demonstrated severe coxsackievirus B4 myocarditis immunohistochemically as a cause of the death. Apoptosis of the cardiac muscle cells was observed using the TdT-mediated dUTP-biotin nick endo labeling method and was considered to play a role in the myocarditis. Congestion of the liver and both lungs due to cardiac failure was also observed. Coxsackievirus infection is found frequently in the Okinawan human population. The present orangutan's infection might have come from visitors who were allowed to go near the orangutan. Malignant tumors, severe suppurative infections, and intestinal parasite infections were not observed. Epstein-Barr virus DNA was detected in lymph nodes, but there was no Burkitt's lymphoma.  (+info)

Centromere repositioning. (4/224)

Primate pericentromeric regions recently have been shown to exhibit extraordinary evolutionary plasticity. In this paper we report an additional peculiar feature of these regions that we discovered while analyzing, by FISH, the evolutionary conservation of primate phylogenetic chromosome IX. If the position of the centromere is not taken into account, a relatively small number of rearrangements must be invoked to account for interspecific differences. Conversely, if the centromere is included, a paradox emerges: The position of the centromere seems to have undergone, in some species, an evolutionary history independent from the surrounding markers. A significant number of additional rearrangements must be proposed to reconcile the order of the markers with centromere position. Alternatively, the evolutionary emergence of neocentromeres can be postulated.  (+info)

Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. (5/224)

The Duffy blood group locus, which encodes a chemokine receptor, is characterized by three alleles-FY*A, FY*B, and FY*O. The frequency of the FY*O allele, which corresponds to the absence of Fy antigen on red blood cells, is at or near fixation in most sub-Saharan African populations but is very rare outside Africa. The FST value for the FY*O allele is the highest observed for any allele in humans, providing strong evidence for the action of natural selection at this locus. Homozygosity for the FY*O allele confers complete resistance to vivax malaria, suggesting that this allele has been the target of selection by Plasmodium vivax or some other infectious agent. To characterize the signature of directional selection at this locus, we surveyed DNA sequence variation, both in a 1.9-kb region centered on the FY*O mutation site and in a 1-kb region 5-6 kb away from it, in 17 Italians and in a total of 24 individuals from five sub-Saharan African populations. The level of variation across both regions is two- to threefold lower in the Africans than in the Italians. As a result, the pooled African sample shows a significant departure from the neutral expectation for the number of segregating sites, whereas the Italian sample does not. The FY*O allele occurs on two major haplotypes in three of the five African populations. This finding could be due to recombination, recurrent mutation, population structure, and/or mutation accumulation and drift. Although we are unable to distinguish among these alternative hypotheses, it is likely that the two major haplotypes originated prior to selection on the FY*O mutation.  (+info)

How reliable are human phylogenetic hypotheses? (6/224)

Cladistic analysis of cranial and dental evidence has been widely used to generate phylogenetic hypotheses about humans and their fossil relatives. However, the reliability of these hypotheses has never been subjected to external validation. To rectify this, we applied identical methods to equivalent evidence from two groups of extant higher primates for whom reliable molecular phylogenies are available, the hominoids and papionins. We found that the phylogenetic hypotheses based on the craniodental data were incompatible with the molecular phylogenies for the groups. Given the robustness of the molecular phylogenies, these results indicate that little confidence can be placed in phylogenies generated solely from higher primate craniodental evidence. The corollary of this is that existing phylogenetic hypotheses about human evolution are unlikely to be reliable. Accordingly, new approaches are required to address the problem of hominin phylogeny.  (+info)

Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans. (7/224)

The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites.  (+info)

Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. (8/224)

Human DNA sequence variation data are useful for studying the origin, evolution, and demographic history of modern humans and the mechanisms of maintenance of genetic variability in human populations, and for detecting linkage association of disease. Here, we report worldwide variation data from a approximately 10-kilobase noncoding autosomal region. We identified 75 variant sites in 64 humans (128 sequences) and 463 variant sites among the human, chimpanzee, and orangutan sequences. Statistical tests suggested that the region is selectively neutral. The average nucleotide diversity (pi) across the region was 0.088% among all of the human sequences obtained, 0.085% among African sequences, and 0.082% among non-African sequences, supporting the view of a low nucleotide diversity ( approximately 0.1%) in humans. The comparable pi value in non-Africans to that in Africans indicates no severe bottleneck during the evolution of modern non-Africans; however, the possibility of a mild bottleneck cannot be excluded because non-Africans showed considerably fewer variants than Africans. The present and two previous large data sets all show a strong excess of low frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The mutation rate was estimated to be 1.15 x 10(-9) per nucleotide per year. Estimates of the long-term effective population size N(e) by various statistical methods were similar to those in other studies. The age of the most recent common ancestor was estimated to be approximately 1.29 million years ago among all of the sequences obtained and approximately 634,000 years ago among the non-African sequences, providing the first evidence from a noncoding autosomal region for ancient human histories, even among non-Africans.  (+info)