Expression of renal aquaporins 1, 2, and 3 in a rat model of cisplatin-induced polyuria. (9/160)

BACKGROUND: Cisplatin (CP)-induced polyuria in rats is attributed to decreased medullary hypertonicity and/or an end-organ resistance to vasopressin. However, the roles of renal aquaporins (AQPs) have not yet been explored. METHODS: Male Sprague-Dawley rats (230 to 245 g) received either a single injection of CP (5 mg/kg, N = 4) or saline (N = 4) intraperitoneally five days before sacrifice. Urine, blood, and kidney samples were analyzed. RESULTS: Platinum accumulated in the cortex and outer medulla of CP-treated rats (39.05 +/- 7.50 and 36.48 +/- 12.44 microg/g vs. 2.52 +/- 0.43 and 1.87 +/- 0.84 microg/g dry tissue in controls, respectively). Histologically, tubular damage and decreased AQP1 immunolabeling were detected in the S3 segment of proximal tubules. CP treatment caused 4.4- and 4.8-fold increases, respectively, in blood urea nitrogen and urine volume, and a 4. 4-fold decrease in urine osmolality. Immunoblots showed that AQP2 and AQP3 were significantly reduced to 33 +/- 10% (P < 0.001) and 69 +/- 11% (P < 0.05), respectively, in the inner medulla of CP-treated rats. Immunocytochemical analysis showed a decrease in AQP2 labeling in the inner medulla of CP-treated rats. Northern hybridization revealed a 33 +/- 11% (P < 0.002) decrease in AQP2 mRNA expression in the inner medulla of CP-treated rats. AQP1 protein expression levels were modestly (67 +/- 7%, P = 0.057) and significantly (53 +/- 13%, P < 0.007) decreased in outer and inner medullae, respectively, of CP-treated rats. CONCLUSIONS: CP-induced polyuria in rats is associated with a significant decrease in the expression of collecting duct (AQP2 and AQP3) and proximal nephron and microvascular (AQP1) water channels in the inner medulla.  (+info)

Early polyuria and urinary concentrating defect in potassium deprivation. (10/160)

The time course of the onset of nephrogenic diabetes insipidus and its relationship to aquaporin-2 (AQP2) expression in K(+) deprivation (KD) remains unknown. Rats were fed a K(+)-free diet and killed after 12 h, 1, 2, 3, 6, or 21 days. Serum K(+) concentration was decreased only after, but not before, 3 days of a K(+)-free diet. Urine osmolality, however, decreased as early as 12 h of KD (1,061 +/- 26 vs. 1,487 +/- 102 mosmol/kgH(2)O in control, P < 0.01). It decreased further at 24 h (to 858 +/- 162 mosmol/kgH(2)O in KD, P < 0.004) and remained low at 21 days of KD (436 +/- 58 mosmol/kgH(2)O, P < 0.0001 compared with baseline). Water intake decreased at 12 h (P < 0.002) but increased at 24 h (P < 0.05) and remained elevated at 21 days of KD. Urine volume increased at 24 h of KD (8 +/- 2 to 15 +/- 2 ml/24 h, P < 0.05) and remained elevated at 21 days. Immunoblot analysis demonstrated that AQP2 protein abundance in the outer medulla remained unchanged at 12 h (P > 0.05), decreased at 24 h ( approximately 44%, P < 0.001), and remained suppressed ( approximately 52%, P < 0.03) at 21 days of KD. In the inner medulla the AQP2 protein abundance remained unchanged at both 12 and 24 h of KD. AQP2 protein abundance in the cortex, however, decreased at 12 h ( approximately 47%, P < 0.01) and remained suppressed at 24 h ( approximately 77%, P < 0.001) of KD. Northern blot analysis showed that AQP2 mRNA decreased as early as 12 h of KD in both cortex (P < 0.02) and outer medulla (P < 0.01) and remained suppressed afterward. In conclusion, the urinary concentrating defect in KD is an early event and precedes the onset of hypokalemia. These studies further suggest that the very early urinary concentrating defect in KD (after 12 but before 24 h) results primarily from the suppression of cortical AQP2, whereas the later onset of a urinary concentrating defect (after 24 h) also involves a downregulation of medullary AQP2.  (+info)

Impaired solute accumulation in inner medulla of Clcnk1-/- mice kidney. (11/160)

The CLC-K1 chloride channel is a kidney-specific CLC chloride channel expressed in the thin ascending limb of Henle's loop (tAL). Recently, we determined that Clcnk1-/- mice show nephrogenic diabetes insipidus (NDI). To investigate the pathogenesis of impaired urinary concentrating ability, we analyzed renal functions of Clcnk1-/- mice in more detail. The osmolar clearance-to-creatinine clearance ratio was not significantly different between Clcnk1+/- and Clcnk1+/+ mice. Fractional excretion of sodium, chloride, and urea was also not significantly affected in Clcnk1-/- mice. These results indicate that the polyuria observed in Clcnk1-/- mice was water diuresis and not osmotic diuresis. The papillary osmolarity in Clcnk1-/- mice was significantly lower than that in Clcnk1+/+ mice under a hydrated condition, and it did not increase even after water deprivation. Sodium and chloride contents in the inner medulla in Clcnk1-/- mice were at about one-half the levels observed in Clcnk1+/+ mice. Furthermore, the accumulation of urea was also impaired in Clcnk1-/- mice, suggesting that the overall countercurrent system was impaired by a defect of its single component, chloride transport in the tAL. The aldose reductase mRNA abundance in Clcnk1-/- mice was decreased, further evincing that inner medullary tonicity is decreased in Clcnk1-/- mice. We concluded that NDI in Clcnk1-/- mice resulted from an impairment in the generation of inner medullary hypertonicity by a dysfunction of the countercurrent systems.  (+info)

Fasting downregulates renal water channel AQP2 and causes polyuria. (12/160)

Starvation causes impairment in the urinary concentrating ability. The mechanism of this defect, however, remains unknown. We tested the possibility that food deprivation might affect the expression and activity of aquaporins (AQP1, 2), thereby impairing renal water reabsorption in the kidney. Rats fasted for 24 h exhibited severe polyuria (urine volume increased from 11 before fasting to 29 ml/24 h after fasting, P < 0.0001) along with failure to concentrate their urine (urine osmolality decreased from 1,485 before fasting to 495 mosmol/kgH(2)O after fasting, P < 0.0001). Refeeding for 24 h returned the urinary concentrating ability back to normal. Northern hybridization and immunoblot analysis demonstrated that fasting was associated with a decrease in AQP2 protein (-80%, P +info)

Eosinophilic cystitis. (13/160)

We describe four cases of eosinophilic cystitis in whom no specific cause could be found, and review the literature. Complaints at presentation included urgency, frequency, abdominal pain, and haematuria. In three patients the symptoms and ultrasound pictures suggested a bladder tumour. One patient was treated with anticholinergics and corticosteroids without relief of symptoms; a localised eosinophilic tumour was excised in one patient who remained symptom free; and two patients were managed conservatively with spontaneous resolution of bladder pathology and symptoms. One case was identified by random bladder biopsy in 150 consecutive patients with unexplained irritable micturition complaints. Eosinophilic cystitis is rare in children. After biopsy, we consider a wait and see policy is justified as symptoms tend to disappear spontaneously. Routine bladder biopsies in children with unexplained bladder symptoms is not justifiable.  (+info)

Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. (14/160)

Previously, we demonstrated that 24 h of bilateral ureteral obstruction (BUO) and short-term release of BUO was associated with a decrease in the expression of aquaporin-2 (AQP2), polyuria, and a reduced urinary concentrating capacity (10). The purposes of the present study were to examine whether BUO and the long-term release of BUO (BUO-R) for 3, 14, and 30 days were associated with changes in the expression of renal AQP1, AQP2, and AQP3 and whether such changes were associated with parallel changes in urinary output and urinary concentrating capacity. Rats (n = 4-7 in each group) were kept in metabolic cages for measurements of urinary output. Kidneys were removed to determine the expression levels of AQP1, AQP2, and AQP3 by semiquantitative immunoblotting. AQP2 was downregulated after 24 h of BUO (42 +/- 3%). Downregulation of AQP2 persisted 3 (43 +/- 14%; P < 0.01) and 15 days after BUO-R (48 +/- 11%; P < 0.01) but was normalized 30 days after BUO-R. AQP3 showed a similar pattern. Moreover, AQP1 was downregulated in response to BUO (65 +/- 7%) and remained downregulated 3 days after BUO-R (41 +/- 5%), 14 days after BUO-R (57 +/- 8%), and 30 days after BUO-R (59 +/- 5%). BUO-R resulted in a significant polyuria that gradually decreased, although it remained significant at day 30. Urinary concentrating capacity remained significantly impaired when determined 3, 14, and 30 days after BUO-R in response to a 24-h period of thirst (1,712 +/- 270 vs. 2,880 +/- 91 mosmol/kgH2O at day 30, P < 0.05). In conclusion, the expression of AQP1, AQP2, and AQP3 were long-term downregulated after BUO-R, suggesting that dysregulation of aquaporins located at the proximal tubule, thin descending limb of the loop of Henle, and the collecting duct may contribute to the long-term polyuria and impairment of urinary concentrating capacity associated with obstructive nephropathy.  (+info)

The renal pathology in a case of lithium-induced diabetes insipidus. (15/160)

A case of lithium-induced diabetes insipidus is reported. At necropsy microscopy shoed unique and extensive damage to cells lining the distal nephron. It is suggested that these changes represent a specific toxic effect of lithium, reported here for the first time in man.  (+info)

A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. (16/160)

A new spontaneously diabetic strain of the Sprague-Dawley rat was established in 1997 and named the SDT (Spontaneously Diabetic Torii) rat. In this research, we investigated the characteristics of the disease condition in the SDT rats. The time of onset of glucosuria was different between male and female SDT rats; glucosuria appeared at approximately 20 weeks of age in male rats and at approximately 45 weeks of age in female rats. A cumulative incidence of diabetes of 100% was noted by 40 weeks of age in male rats, while it was only 33.3% even by 65 weeks of age in female rats. The survival rate up to 65 weeks of age was 92.9% in male rats and 97.4% in female rats. Glucose intolerance was observed in male rats from 16 weeks of age. The clinical characteristics of the male SDT rats were (1) hyperglycemia and hypoinsulinemia (from 25 weeks of age); (2) long-term survival without insulin treatment; (3) hypertriglyceridemia (by 35 weeks of age); however, no obesity was noted in any of the male rats. The histopathological characteristics of the male rats with diabetes mellitus (DM) were (1) fibrosis of the pancreatic islets (by 25 weeks of age); (2) cataract (by 40 weeks of age); (3) tractional retinal detachment with fibrous proliferation (by 70 weeks of age) and (4) massive hemorrhaging in the anterior chamber (by 77 weeks of age). These clinical and histopathological characteristics of the disease in SDT rats resemble those of human Type 2 diabetes with insulin hyposecretion. In conclusion, SDT rat is considered to be a potentially useful model for studies of diabetic retinopathy encountered in humans.  (+info)