Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. (1/793)

We conducted a phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Fostriecin was administered intravenously over 60 min on days 1-5 at 4-week intervals. Dose was escalated from 2 mg m(-2) day(-1) to 20 mg m(-2) day(-1) in 20 patients. Drug pharmacokinetics was analysed with high performance liquid chromatography with UV-detection. Plasma collected during drug administration was tested in vitro for growth inhibition of a teniposide-resistant small-cell lung cancer (SCLC) cell line. The predominant toxicities were elevated liver transaminases (maximum common toxicity criteria (CTC) grade 4) and serum creatinine (maximum CTC grade 2). These showed only a limited increase with increasing doses, often recovered during drug administration and were fully reversible. Duration of elevated alanine-amino transferase (ALT) was dose-limiting in one patient at 20 mg m(-2). Other frequent toxicities were grade 1-2 nausea/vomiting, fever and mild fatigue. Mean fostriecin plasma half-life was 0.36 h (initial; 95% CI, 0-0.76 h) and 1.51 h (terminal; 95% CI, 0.41-2.61 h). A metabolite, most probably dephosphorylated fostriecin, was detected in plasma and urine. No tumour responses were observed, but the plasma concentrations reached in the patients were insufficient to induce significant growth inhibition in vitro. The maximum tolerated dose (MTD) has not been reached, because drug supply was stopped at the 20 mg m(-2) dose level. However, further escalation seems possible and is warranted to achieve potentially effective drug levels. Fostriecin has a short plasma half-life and longer duration of infusion should be considered.  (+info)

Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. (2/793)

Myxobacterial strains producing polyketides (PKs) assumed to be biosynthesized by a type I polyketide synthase (PKS) were analysed. Myxobacteria also produce a variety of polypeptides (PP) and PKs with incorporated amino acids ('mixed PK-PP'). In order to be able to identify the biosynthetic gene clusters for these metabolites a PCR based approach has been developed to clone ketosynthase (KS) domains of PKS genes from these organisms. Conserved regions of peptide synthetases of the non-ribosomal type (NRPS) were also amplified via PCR. KS fragments from Stigmatella aurantiaca Sg a15 were used for chromosomal gene inactivation experiments resulting in a series of mutants including such that were unable to produce stigmatellins and myxalamids. A NRPS fragment and PKS fragments from Sorangium cellulosum So ce90 were used to identify cosmids hybridizing with both types of probes from a genomic library. Both a NRPS and a PKS fragment were cloned and sequenced from a relatively short restriction fragment of one of these cosmids. The method described here should be very useful to clone and identify PKS, NRPS and mixed PKS-NRPS from myxobacteria in general and thereby open opportunities to use the biochemical diversity of these bacteria for genetic engineering and combinatorial biosynthesis.  (+info)

Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. I. Characterization of the cytochrome bc1-type complex of the acidophilic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. (3/793)

The redox components of the cytochrome bc1 complex from the acidophilic chemolithotrophic organism Thiobacillus ferrooxidans were investigated by potentiometric and spectroscopic techniques. Optical redox titrations demonstrated the presence of two b-type hemes with differing redox midpoint potentials at pH 7.4 (-169 and + 20 mV for bL and bH, respectively). At pH 3.5, by contrast, both hemes appeared to titrate at about +20 mV. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide, and stigmatellin induced distinguishable shifts of the b hemes' alpha-bands, providing evidence for the binding of antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide near heme bH (located on the cytosolic side of the membrane) and of stigmatellin near heme bL (located on the periplasmic side of the membrane). The inhibitors stigmatellin, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, and 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone affected the EPR spectrum of the Rieske iron-sulfur center in a way that differs from what has been observed for cytochrome bc1 or b6f complexes. The results obtained demonstrate that the T. ferrooxidans complex, although showing most of the features characteristic for bc1 complexes, contains unique properties that are most probably related to the chemolithotrophicity and/or acidophilicity of its parent organism. A speculative model for reverse electron transfer through the T. ferrooxidans complex is proposed.  (+info)

In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. (4/793)

A commercially available disk diffusion procedure was used in a large-scale study to evaluate the susceptibility of a wide range of Candida isolates to polyenes and azoles. With almost all isolates of C. glabrata resistant colonies were present within the inhibition zones for the azole compounds fluconazole, ketoconazole and miconazole, and less frequently for isoconazole, econazole and clotrimazole. Ten randomly selected isolates were cloned by limiting dilution and the susceptibility of the resulting strains to polyenes and azoles was determined. All strains presented a similar susceptibility pattern with sensitivity to polyenes and the presence of resistant colonies for all azole compounds except tioconazole. For each strain and each antifungal agent, one of these resistant colonies was subcultured and studied for antifungal susceptibility. All these colonies showed similar properties regardless of which antifungal agent allowed their selection, with increased sensitivity to polyenes and cross-resistance to the azole compounds except tioconazole. Similar results were obtained on Shadomy's modified medium and on synthetic medium. Likewise, determination of MICs by the Etest method confirmed the resistance to fluconazole. Comparative growth studies revealed a respiratory deficiency in the mutants caused by mitochondrial DNA (mtDNA) deletions. In addition, 'petite' mutants were obtained from a wild-type strain by exposure to ethidium bromide, and these respiratory mutants were shown to be resistant to azoles. These results demonstrate the relationship between mtDNA deficiency and resistance to azoles, and provide an interesting model to study the mechanisms of action of these antifungal agents.  (+info)

Importance of the beta12-beta13 loop in protein phosphatase-1 catalytic subunit for inhibition by toxins and mammalian protein inhibitors. (5/793)

Type-1 protein serine/threonine phosphatases (PP1) are uniquely inhibited by the mammalian proteins, inhibitor-1 (I-1), inhibitor-2 (I-2), and nuclear inhibitor of PP1 (NIPP-1). In addition, several natural compounds inhibit both PP1 and the type-2 phosphatase, PP2A. Deletion of C-terminal sequences that included the beta12-beta13 loop attenuated the inhibition of the resulting PP1alpha catalytic core by I-1, I-2, NIPP-1, and several toxins, including tautomycin, microcystin-LR, calyculin A, and okadaic acid. Substitution of C-terminal sequences from the PP2A catalytic subunit produced a chimeric enzyme, CRHM2, that was inhibited by toxins with dose-response characteristics of PP1 and not PP2A. However, CRHM2 was insensitive to the PP1-specific inhibitors, I-1, I-2, and NIPP-1. The anticancer compound, fostriecin, differed from other phosphatase inhibitors in that it inhibited wild-type PP1alpha, the PP1alpha catalytic core, and CRHM2 with identical IC(50). Binding of wild-type and mutant phosphatases to immobilized microcystin-LR, NIPP-1, and I-2 established that the beta12-beta13 loop was essential for the association of PP1 with toxins and the protein inhibitors. These studies point to the importance of the beta12-beta13 loop structure and conformation for the control of PP1 functions by toxins and endogenous proteins.  (+info)

Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. (6/793)

Quinol oxidation by the bc(1) complex of Rhodobacter sphaeroides occurs from an enzyme-substrate complex formed between quinol bound at the Q(o) site and the iron-sulfur protein (ISP) docked at an interface on cytochrome b. From the structure of the stigmatellin-containing mitochondrial complex, we suggest that hydrogen bonds to the two quinol hydroxyl groups, from Glu-272 of cytochrome b and His-161 of the ISP, help to stabilize the enzyme-substrate complex and aid proton release. Reduction of the oxidized ISP involves H transfer from quinol. Release of the proton occurs when the acceptor chain reoxidizes the reduced ISP, after domain movement to an interface on cytochrome c(1). Effects of mutations to the ISP that change the redox potential and/or the pK on the oxidized form support this mechanism. Structures for the complex in the presence of inhibitors show two different orientations of Glu-272. In stigmatellin-containing crystals, the side chain points into the site, to hydrogen bond with a ring hydroxyl, while His-161 hydrogen bonds to the carbonyl group. In the native structure, or crystals containing myxothiazol or beta-methoxyacrylate-type inhibitors, the Glu-272 side chain is rotated to point out of the site, to the surface of an external aqueous channel. Effects of mutation at this residue suggest that this group is involved in ligation of stigmatellin and quinol, but not quinone, and that the carboxylate function is essential for rapid turnover. H(+) transfer from semiquinone to the carboxylate side chain and rotation to the position found in the myxothiazol structure provide a pathway for release of the second proton.  (+info)

A multiplasmid approach to preparing large libraries of polyketides. (7/793)

A three-plasmid system for heterologous expression of 6-deoxyerythronolide B synthase (DEBS) has been developed to facilitate combinatorial biosynthesis of polyketides made by type I modular polyketide synthases (PKSs). The eryA PKS genes encoding the three DEBS subunits were individually cloned into three compatible Streptomyces vectors carrying mutually selectable antibiotic resistance markers. A strain of Streptomyces lividans transformed with all three plasmids produced 6-deoxyerythronolide B at a level similar to that of a strain transformed with a single plasmid containing all three genes. The utility of this system in combinatorial biosynthesis was demonstrated through production of a library of modified polyketide macrolactones by using versions of each plasmid constructed to contain defined mutations. Combinations of these vector sets were introduced into S. lividans, resulting in strains producing a wide range of 6-deoxyerythronolide B analogs. This method can be extended to any modular PKS and has the potential to produce thousands of novel natural products, including ones derived from further modification of the PKS products by tailoring enzymes.  (+info)

Determination of the binding rate constants of stigmatellin and UHDBT to bovine cytochrome bc(1) complex by cytochrome c(1) oxidation. (8/793)

Based on the high electron transfer rate between the [2Fe-2S] cluster and heme c(1) and the elevation of the redox midpoint potential of iron sulfur protein (ISP) upon binding of certain Qo inhibitors, the binding rate constants of stigmatellin and UHDBT to the cytochrome bc(1) complex were determined using a stopped-flow rapid scanning technique. Assuming that the intramolecular electron transfer from ISP to cytochrome c(1) is much faster than the binding of inhibitors, the rate of the inhibitor binding can be determined by the rate of cytochrome c(1) oxidation. The binding rate constants were calculated to be 1.0x10(5) and 2.3x10(5) M(-1) s(-1) at pH 7.5 for stigmatellin and UHDBT, respectively. The binding rate constant of UHDBT is pH dependent and that of stigmatellin is not.  (+info)