Interaction of tumor and normal blood cells with ethylene oxide and propylene oxide block copolymers. (1/274)

Ethylene oxide and propylene oxide block copolymers (pluronics) are widely known as agents that promote drug penetration across biological barriers. We have studied the interaction of normal and malignant blood cells with pluronics L61 and P85 that have different hydrophobicity. SP2/0 myeloma cells accumulated pluronics while normal cells adsorb most of the polymer on the surface. Interaction of pluronics with cells resulted in drastic changes of membrane microviscosity. Tumor cell membrane microviscosity decreased after pluronics adsorption, in contrast to normal cells, whose membrane microviscosity was enhanced. We suppose that sensitivity of tumor cell membrane microviscosity to the pluronics action correlates with its permeability for molecular substances.  (+info)

Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. (2/274)

To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.  (+info)

Activities of poloxamer CRL-1072 against Mycobacterium avium in macrophage culture and in mice. (3/274)

Earlier studies reported that certain large hydrophobic poloxamer surfactants were able to inhibit the growth of Mycobacterium avium-M. intracellulare complex (MAI) in broth and to produce synergistic enhancement of the activity of rifampin. CRL-1072 was synthesized to have an optimal structure for antimicrobic effects and greater purity. Its MIC for MAI in broth was greater than 100 microg/ml. Surprisingly, its MIC for MAI growing in human U937 monocytoid cells was much lower, 5 microg/ml. A still lower concentration, 0.1 microg/ml, produced synergistic enhancement of the activities of clarithromycin, rifampin, amikacin, streptomycin, and clindamycin, but not isoniazid, against MAI infecting monocytoid cells. Mice tolerated injection of doses of CRL-1072 as high as 125 mg/kg of body weight. Pharmacokinetic analysis revealed that the copolymer had an elimination half-life of 60 h and suggested dosing regimens that might produce therapeutic concentrations in tissue. In a mouse model of acute MAI infection, CRL-1072 significantly enhanced the bactericidal activities of clarithromycin and rifampin when it was administered at 1.0 mg/kg intravenously (i.v.) three times per week. CRL-1072 given i.v. or orally also enhanced the bactericidal activity of clindamycin against MAI.  (+info)

Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats. (4/274)

A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod performance, or in tests of general locomotor activity. Furthermore, latencies to select a lever in the DSDT were not affected. These results suggest that PF-68 induced deficits in learning and memory without confounding peripheral motor, sensory, or motivational effects at the tested doses. Furthermore, none of the doses induced a conditioned taste aversion to a novel 0.1% saccharin solution indicating a lack of nausea or gastrointestinal malaise induced by the compound. The data indicate that increases in neuronal plasma membrane order may have significant effects on neurotransmitter function as well as learning and memory processes. Furthermore, compounds such as PF-68 may also offer novel tools for studying the role of neuronal PMO in mnemonic processes and changes in PMO resulting from age-related disorders such as AD.  (+info)

Control of staphylococcal adhesion to polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer 407. (5/274)

We studied the antiadhesive effect of Poloxamer 407 (P407), together with modifications in the antimicrobial susceptibility of residual adherent staphylococci. Bacterial adherence was markedly inhibited (77% to more than 99.9%) whether polymethylmethacrylate was exposed to P407 before or during the adherence assay. Furthermore, residual adherent staphylococci appeared to be more susceptible to antibiotic activity, suggesting that combination of P407 with antibiotics could be a promising approach to the prevention of infection of foreign material.  (+info)

A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. (6/274)

Intramuscular administration of plasmid DNA is a promising strategy to express therapeutic genes, however, it is limited by a relatively low level of gene expression. We report here that a non-ionic carrier, SP1017, composed of two amphiphilic block copolymers, pluronics L61 and F127, also known as poloxamers, significantly increases intramuscular expression of plasmid DNA. Two reporter genes, luciferase and beta-galactosidase, and one therapeutic gene, erythropoietin, were injected intramuscularly with and without SP1017 into C57Bl/6 and Balb/C mice and Sprague-Dawley rats. SP1017 increased gene expression by about 10-fold and maintained higher gene expression compared with naked DNA. Comparison of SP1017 with polyvinyl pyrrolidone (PVP) showed that SP1017 exhibited a significantly higher efficacy and its optimal dose was 500-fold lower. Experiments with beta-galactosidase using X-gal staining suggested that SP1017 considerably increased plasmid DNA diffusion through the tissue. SP1017 also improved expression of the erythropoietin gene leading to an increase in its systemic level and hematocrits. Previous toxicity studies have suggested that SP1017 has over a 1000-fold safety margin. Poloxamers used in SP1017 are listed in the US Pharmacopeia as inactive excipients and are widely used in a variety of clinical applications. We believe that the described system constitutes a simple and efficient gene transfer method to achieve local or systemic production of therapeutic proteins.  (+info)

In vitro reversion of amphotericin B resistance in Leishmania donovani by poloxamer 188. (7/274)

A micellar formulation of amphotericin B (AmB) solubilized with poloxamer 188 was evaluated against an AmB Leishmania donovani-resistant line. A concave isobologram showed a synergistic effect of this association against promastigotes. This result was confirmed with amastigotes since the 50% effective concentration of the new formulation was 100 times less than that of the control AmB formulation.  (+info)

The impact of time to thrombolytic treatment on outcome in patients with acute myocardial infarction. For the CORE investigators (Collaborative Organisation for RheothRx Evaluation). (8/274)

OBJECTIVES: To examine the impact of time to thrombolytic treatment on multiple acute outcome variables in a single trial of thrombolysis in acute myocardial infarction. DESIGN AND PATIENTS: Mortality and reinfarction rate were measured in 2770 patients with acute myocardial infarction who received thrombolysis within 12 hours in CORE, an international, dose ranging trial of poloxamer 188. Tc-99m sestamibi infarct size and radionuclide angiographic ejection fraction substudies included 1099 and 1074 patients, respectively. RESULTS: Time to thrombolysis, subgrouped by intervals (< 2, 2-4, > or = 4-6, and > or = 6 hours), was significantly associated with infarct size (median 15.0%, 18.5%, 22.0%, 18.5% of left ventricle; p = 0.033), mean (SD) ejection fraction (51.5 (12.0)%, 48. 3 (13.9)%, 48.2 (13.3)%, 48.2 (15.0)%; p = 0.006), 35 day mortality (5.7%, 7.1%, 7.9%, 12.5%; p = 0.0004), six month mortality (7.3%, 8. 6%, 10.4%, 15.5%; p < 0.0001), and 35 day reinfarction rate (6.1%, 3. 2%, 4.0%, 0.9%; p = 0.0001). CONCLUSIONS: In this single large trial, the beneficial effect of time to thrombolysis on infarct size and ejection fraction was restricted to treatment given within two hours of symptom onset, while the effect on mortality was evident over all time intervals. Reinfarction rate was higher in patients treated with earlier thrombolysis.  (+info)