Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. (1/659)

Glial cell line-derived neurotrophic factor (GDNF) and a related protein, neurturin (NTN), require a GPI-linked coreceptor, either GFR alpha1 or GFR alpha2, for signaling via the transmembrane Ret tyrosine kinase. We show that mice lacking functional GFR alpha2 coreceptor (Gfra2-/-) are viable and fertile but have dry eyes and grow poorly after weaning, presumably due to malnutrition. While the sympathetic innervation appeared normal, the parasympathetic cholinergic innervation was almost absent in the lacrimal and salivary glands and severely reduced in the small bowel. Neurite outgrowth and trophic effects of NTN at low concentrations were lacking in Gfra2-/- trigeminal neurons in vitro, whereas responses to GDNF were similar between the genotypes. Thus, GFR alpha2 is a physiological NTN receptor, essential for the development of specific postganglionic parasympathetic neurons.  (+info)

Functional intestinal obstruction due to deficiency of argyrophil neurones in the myenteric plexus. Familial syndrome presenting with short small bowel, malrotation, and pyloric hypertrophy. (2/659)

In 3 infants functional intestinal obstruction, associated with a short small intestine, malrotation, and pyloric hypertrophy, was shown to be due to failure of development of the argyrophil myenteric plexus, with the absence of ongoing peristalsis. 4 infants with similar clinical features have been described previously, and there is evidence for an autosomal recessive mode of inheritance of this syndrome.  (+info)

Immediate-early gene expression in the inferior mesenteric ganglion and colonic myenteric plexus of the guinea pig. (3/659)

Activation of neurons in the inferior mesenteric ganglion (IMG) was assessed using c-fos, JunB, and c-Jun expression in the guinea pig IMG and colonic myenteric plexus during mechanosensory stimulation and acute colitis in normal and capsaicin-treated animals. Intracolonic saline or 2% acetic acid was administered, and mechanosensory stimulation was performed by passage of a small (0.5 cm) balloon either 4 or 24 hr later. Lower doses of capsaicin or vehicle were used to activate primary afferent fibers during balloon passage. c-Jun did not respond to any of the stimuli in the study. c-fos and JunB were absent from the IMG and myenteric plexus of untreated and saline-treated animals. Acetic acid induced acute colitis by 4 hr, which persisted for 24 hr, but c-fos was found only in enteric glia in the myenteric plexus and was absent from the IMG. Balloon passage induced c-fos and JunB in only a small subset of IMG neurons and no myenteric neurons. However, balloon passage induced c-fos and JunB in IMG neurons (notably those containing somatostatin) and the myenteric plexus of acetic acid-treated animals. After capsaicin treatment, c-fos and JunB induction by balloon passage was inhibited in the IMG, but there was enhanced c-fos expression in the myenteric plexus. c-fos and JunB induction by balloon stimulation was also mimicked by acute activation of capsaicin-sensitive nerves. These data suggest that colitis enhances reflex activity of the IMG by a mechanism that involves activation of both primary afferent fibers and the myenteric plexus.  (+info)

Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. (4/659)

Nitric oxide (NO) synthesis was examined in intact longitudinal muscle-myenteric plexus preparations of the guinea pig ileum by determining the formation of [3H]citrulline during incubation with [3H]arginine. Spontaneous [3H]citrulline production after 30 min was 80-90 dpm/mg, which constituted approximately 1% of the tissue radioactivity. Electrical stimulation (10 Hz) led to a threefold increase in [3H]citrulline formation. Removal of calcium from the medium or addition of NG-nitro-L-arginine strongly inhibited both spontaneous and electrically induced production of [3H]citrulline. TTX reduced the electrically induced but not spontaneous [3H]citrulline formation. The electrically induced formation of [3H]citrulline was diminished by (+)-tubocurarine and mecamylamine and enhanced by scopolamine, which suggests that endogenous ACh inhibits, via muscarinic receptors, and stimulates, via nicotinic receptors, the NO synthesis in the myenteric plexus. The GABAA receptor agonist muscimol and GABA also reduced the electrically evoked formation of [3H]citrulline, whereas baclofen was without effect. Bicuculline antagonized the inhibitory effect of GABA. It is concluded that nitrergic myenteric neurons are equipped with GABAA receptors, which mediate inhibition of NO synthesis.  (+info)

Role of PI3-kinase in the development of interstitial cells and pacemaking in murine gastrointestinal smooth muscle. (5/659)

1. Development of the pacemaker system in the small intestine depends upon signalling via tyrosine kinase (Kit) receptors. The downstream pathways initiated by Kit in interstitial cells of Cajal (ICC) have not been investigated. Wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), inhibitors of phosphatidylinositol 3'-kinase (PI3-kinase), were used to test the involvement of this pathway in the development and maintenance of ICC and electrical rhythmicity in the murine small intestine. 2. ICC and electrical slow waves were present in the murine jejunum at birth. ICC and electrical rhythmicity continued to develop in neonates such that adult activity was recorded after 1 week. Development of ICC and rhythmicity were maintained in organ culture. 3. Wortmannin or LY 294002 inhibited the development of slow waves and blocked rhythmicity within 2-4 days. Loss of slow waves was preceded by disappearance of Kit-positive cells from the myenteric (IC-MY) and deep muscular plexus (IC-DMP) regions. Wortmannin or LY 294002 had no acute effect on slow waves. 4. Muscles from older animals (day 10-day 30) developed resistance to wortmannin treatment, but when the exposure to wortmannin was increased to 35 days, damage to ICC networks and electrical dysrhythmias were observed. 5. PI3-kinase appears to be a critical downstream signalling element linking Kit receptors to ICC development and maintenance of phenotype. ICC are more sensitive to Kit or PI3-kinase blockade at birth, but the importance of the PI3-kinase signalling in the maintenance of ICC persists into adulthood. Interference with PI3-kinase signalling in immature or adult animals could result in disruption of ICC and gastrointestinal dysrhythmias.  (+info)

Notable postnatal alterations in the myenteric plexus of normal human bowel. (6/659)

BACKGROUND: Nitric oxide is the most important transmitter in non-adrenergic non-cholinergic nerves in the human gastrointestinal tract. Impaired nitrergic innervation has been described in Hirschsprung's disease, hypertrophic pyloric stenosis, and intestinal neuronal dysplasia (IND). Recent findings indicate that hyperganglionosis, one of the major criteria of IND, is age dependent. However, information is scanty regarding the neurone density in normal human bowel in the paediatric age group. AIMS: To determine neurone density, morphology, and nitric oxide synthase distribution of the normal myenteric plexus at different ages during infancy and childhood. METHODS: Specimens were obtained from small bowel and colon in 20 children, aged one day to 15 years, at postmortem examination. Whole mount preparations were made of the myenteric plexus, which were subsequently stained using NADPH diaphorase histochemistry (identical to nitric oxide synthase) and cuprolinic blue (a general neuronal marker). The morphology of the myenteric plexus was described and the neurone density estimated. RESULTS: The myenteric plexus meshwork becomes less dense during the first years of life. The density of ganglion cells in the myenteric plexus decreases significantly with age during the first three to four years of life. The NADPH diaphorase positive (nitrergic) subpopulation represents about 34% of all neurones in the myenteric plexus. CONCLUSIONS: The notable decrease in neurone density in the myenteric plexus during the first years of life indicates that development is still an ongoing process in the postnatal enteric nervous system. Applied to the clinical situation, this implies that interpretation of enteric nervous system pathology is dependent on the age of the patient.  (+info)

Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. (7/659)

1. Using retrograde tracing with 1,1'-didodecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) in combination with electrophysiological and immunohistochemical techniques we determined the properties of the putative intrinsic primary afferent myenteric neurones with mucosal projections in the guinea-pig proximal colon. 2. Eighty-four out of eighty-five DiI-labelled myenteric neurones were AH neurones with a late after-hyperpolarization. Thirty-three per cent of them exhibited atropine- and tetrodotoxin-resistant spontaneously occurring hyperpolarizing potentials (SHPs) during which the membrane resistance and excitability decreased. 3. DiI-labelled AH neurones had multipolar Dogiel type II morphology, primarily of the dendritic type. Sixty-one per cent of the neurones were immunoreactive for choline acetyltransferase (ChAT) and calbindin (Calb) and 23 % were ChAT positive but Calb negative. 4. DiI-labelled neurones did not receive fast excitatory postsynaptic potentials but 94 % (34/36) received slow excitatory postsynaptic potentials (sEPSPs). The neurokinin-3 (NK-3) agonist (MePhe7)-NKB but not the NK-1 agonist [(SAR9,Met(O2)11]-SP mimicked this response. The NK-3 receptor antagonist SR 142801 (1 microM) significantly decreased the amplitude and duration of the sEPSPs; the NK-1 receptor antagonist CP-99,994 (1 microM) was ineffective. Atropine (0.5 microM) increased the duration but not the amplitude of the sEPSPs. 5. Microejection of 100 mM sodium butyrate onto the neurones induced in 90 % of the DiI-labelled neurones a transient depolarization associated with an increased excitability. In neurones with SHPs sodium butyrate evoked, additionally, a late onset hyperpolarization. Perfusion of 0.1-10 mM sodium butyrate induced a dose-dependent increase in neuronal excitability. Sodium butyrate was ineffective when applied directly onto the mucosa. 6. Mucosally projecting myenteric neurones of the colon are multipolar AH neurones with NK-3-mediated slow EPSPs and somal butyrate sensitivity.  (+info)

Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. (8/659)

1. The process by which stretch of the external muscle of the intestine leads to excitation of myenteric neurons was investigated by intracellular recording from neurons in isolated longitudinal muscle-myenteric plexus preparations from the guinea-pig. 2. Intestinal muscle that was stretched by 40 % beyond its resting size in either the longitudinal or circular direction contracted irregularly. Both multipolar, Dogiel type II, neurons and uniaxonal neurons generated action potentials in stretched tissue. Action potentials persisted when the membrane potential was hyperpolarized by passing current through the recording electrode for 10 of 14 Dogiel type II neurons and 1 of 18 uniaxonal neurons, indicating that the action potentials originated in the processes of these neurons. For the remaining four Dogiel type II and 17 uniaxonal neurons, the action potentials were abolished, suggesting that they were the result of synaptic activation of the cell bodies. 3. Neurons did not fire action potentials when the muscle was paralysed by nicardipine (3 microM), even when the preparations were simultaneously stretched by 50 % beyond resting length in longitudinal and circular directions. Spontaneous action potentials were not recorded in unstretched (slack) tissue, but when the L-type calcium channel agonist (-)-Bay K 8644 (1 microM) was added, the muscle contracted and action potentials were observed in Dogiel type II neurons and uniaxonal neurons. 4. The proteolytic enzyme dispase (1 mg ml-1) added to preparations that were stretched 40 % beyond slack width caused the myenteric plexus to lift away from the muscle, but did not prevent muscle contraction. In the presence of dispase, the neurons ceased firing action potentials spontaneously, although action potentials could still be evoked by intracellular current pulses. After the action of dispase, (-)-Bay K 8644 (1 microM) contracted the muscle but did not cause neurons to fire action potentials. 5. Gadolinium ions (1 microM), which block some stretch activated ion channels, stopped muscle contraction and prevented action potential firing in tissue stretched by 40 %. However, when (-)-Bay K 8644 (1 microM) was added in the presence of gadolinium, the muscle again contracted and action potentials were recorded from myenteric neurons. 6. Stretching the tissue 40 % beyond its slack width caused action potential firing in preparations that had been extrinsically denervated and in which time had been allowed for the cut axons to degenerate. 7. The present results lead to the following hypotheses. The neural response to stretching depends on the opening of stretch activated channels in the muscle, muscle contraction in response to this opening, and mechanical communication from the contracting muscle to myenteric neurons. Distortion of sensitive sites in the processes of the neurons opens channels to initiate action potentials that are propagated to the soma, where they are recorded. Neurons are also excited indirectly by slow synaptic transmission from neurons that respond directly to distortion.  (+info)