Basic homopolyamino acids, histones and protamines are potent antagonists of angiogenin binding to ribonuclease inhibitor. (1/83)

A radio-ribonuclease inhibitor assay based on the interaction of 125I-angiogenin with ribonuclease inhibitor (RI) was used to detect pancreatic-type ribonucleases and potential modulators of their action. We show that highly basic proteins including the homopolypeptides poly-arginine, poly-lysine and poly-ornithine, core histones, spermatid-specific S1 protein and the protamines HP3 and Z3 were strong inhibitors of angiogenin binding to RI. A minimum size of poly-arginine and poly-lysine was required for efficient inhibition. The inhibition likely resulted from direct association of the basic proteins with the acidic inhibitor, as RI bound to poly-lysine and protamines while 125I-angiogenin did not. Antagonists of the angiogenin-RI interaction are potential regulators of either angiogenin-triggered angiogenesis and/or intracellular RI function, depending on their preferential target.  (+info)

Induction of megakaryocyte differentiation by a novel pregnancy-specific hormone. (2/83)

Maturation of megakaryocytes and subsequent platelet release are normally regulated by a network of cytokines, including thrombopoietin and various interleukins. Because abnormal platelet production and activation have been implicated in gestational pathologies, additional pregnancy-specific cytokines may play important roles in the regulation of megakaryocytopoiesis. Consistent with this hypothesis, we have found that the hormone prolactin-like protein E, a placental hormone that we have recently characterized, targets megakaryocytes through a specific cell surface receptor and induces megakaryocyte differentiation through a gp130-dependent signal transduction pathway.  (+info)

Altered arterial concentrations of placental hormones during maximal placental growth in a model of placental insufficiency. (3/83)

Pregnant ewes were exposed chronically to thermoneutral (TN; 20+/-2 degrees C, 30% relative humidity; n=8) or hyperthermic (HT; 40+/-2 degrees C 12 h/day, 35+/-2 degrees C 12 h/day, 30% relative humidity, n=6) environments between days 37 and 93 of pregnancy. Ewes were killed following 56 days of exposure to either environment (days in treatment (dit)), corresponding to 93+/-1 day post coitus (dpc). Maternal core body temperatures (CBT) in HT ewes were significantly elevated above the TN ewes (HT; 39.86+/-0.1 degrees C vs TN; 39.20+/-0.1 degrees C; P<0.001). Both groups of animals displayed circadian CBT, though HT ewes had elevated amplitudes (HT; 0.181+/-0.002 degrees C vs TN; 0.091+/-0.002 degrees C; P<0.001) and increased phase shift constants (HT; 2100 h vs TN; 1800 h; P<0.001). Ewes exposed to chronic heat stress had significantly reduced progesterone and ovine placental lactogen (oPL) concentrations from 72 and 62 dpc respectively (P<0.05), corresponding to approximately 30 dit. However, when compared with the TN ewes, HT cotyledonary tissue oPL mRNA and protein concentrations were not significantly different (P>0.1). Prolactin concentrations rose immediately upon entry into the HT environment, reaching concentrations approximately four times that of TN ewes, a level maintained throughout the study (HT; 216.31+/-32.82 vs TN; 54. 40+/-10.0; P<0.0001). Despite similar feed intakes and euglycemia in both groups of ewes, HT fetal body weights were significantly reduced when compared with TN fetuses (HT; 514.6+/-48.7 vs TN; 703. 4+/-44.8; P<0.05), while placental weights (HT; 363.6+/-63.3 vs TN; 571.2+/-95.9) were not significantly affected by 56 days of heat exposure. Furthermore, the relationship between body weight and fetal length, the ponderal index, was significantly reduced in HT fetuses (HT; 3.01+/-0.13 vs TN; 3.57+/-0.18; P<0.05). HT fetal liver weights were also significantly reduced (HT; 27.31+/-4.73 vs TN; 45.16+/-6.16; P<0.05) and as a result, the brain/liver weight ratio was increased. This study demonstrates that chronic heat exposure lowers circulating placental hormone concentrations. The observation that PL mRNA and protein contents are similar across the two treatments, suggests that reduced hormone concentrations are the result of impaired trophoblast cell development, specifically trophoblast migration. Furthermore, the impact of heat exposure during maximal placental growth is great enough to restrict early fetal development, even before the fetal maximal growth phase (100 dpc-term). These data highlight that intrauterine growth retardation (IUGR) may result primarily from placental trophoblast cell dysfunction, and secondarily from later reduced placental size.  (+info)

Hormonal control of protein expression and mRNA levels of the MaxiK channel alpha subunit in myometrium. (4/83)

Large conductance voltage-dependent and Ca(2+)-modulated K(+) channels play a crucial role in myometrium contractility. Western blots and immunocytochemistry of rat uterine sections or isolated cells show that MaxiK channel protein signals drastically decrease towards the end of pregnancy. Consistent with a transcriptional regulation of channel expression, mRNA levels quantified with the ribonuclease protection assay correlated well with MaxiK protein levels. As a control, Na(+)/K(+)-ATPase protein and RNA levels do not significantly change at different stages of pregnancy. The low numbers of MaxiK channels at the end of pregnancy may facilitate uterine contraction needed for parturition.  (+info)

Effects of dopamine and melatonin on the regulation of the PIT-1 isotype, placental growth hormone and lactogen gene expressions in the rat placenta. (5/83)

Rat placenta produces several members of the placental prolactin-growth hormone (PRL-GH), including placental lactogen (PL) and placental prolactin like protein (PLP), during pregnancy. It is important to study placental local regulators that control the expression of PRL-GH genes. We have previously reported that dopamine (DA) can regulate Pit-1 and PL-II gene expressions. In this study we aimed to investigate the local expression of melatonin receptor 1a (Mel1a) and the effects of DA and melatonin on the expressions of PL-Iv, PL-II, PLP-C genes and Pit-1 gene that are involved in the expression of PRL-GH genes in the rat pituitary and placenta. According to the Northern blot analysis, DA receptor 2 (D2) was expressed in the rat placenta. We also report on the local expression of Mel1a in the rat placenta for the first time. Injected DA agonist, bromocriptine (in vivo) decreased PL-Iv, PLP-C and Pit-1 mRNA levels in the rat placenta. The melatonin agonist, chloromelatonin in culture media also decreased the levels of PL-Iv, PL-II and PLP-C mRNA. However, melatonin does not affect the Pit-1 mRNA level. These data suggest that D2 and Mel1a may control the expression of PRL-GH genes in the rat placenta and its response to the extracellular changes of DA and melatonin secreted from the maternal organ. However, Pit-1 may not be involved in the Mel1a induced inhibition of PRL-GH gene expressions in the rat placenta.  (+info)

Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment. (6/83)

Proper function of the p53 tumor suppressor gene is critical for inhibiting tumor development in a broad spectrum of tissues. Although the mammary gland is highly susceptible to tumor formation, the functional status of p53 in the normal tissue had not been investigated. Therefore, expression, localization, and activity of p53 were examined in normal mammary tissues. High levels of p53 protein were found expressed in the cytoplasm of the ductal epithelium of the quiescent mammary gland. Ionizing radiation failed to recruit p53 to the nucleus, and p53-dependent responses were minimal. However, transient hormonal stimulation resulted in nuclear accumulation of p53, an induction of p21/WAF1, and a 5-fold increase in apoptosis after ionizing radiation. Therefore, the functional state of wild-type p53 in the mammary epithelium can be regulated by hormonal stimuli.  (+info)

A member of the nuclear factor-1 family is involved in the pituitary repression of the human placental growth hormone genes. (7/83)

The human growth hormone (GH) gene family consists of five tandemly arranged and highly related genes, including the chorionic somatomammotropins (CSs), at a single locus on chromosome 17. Despite striking homologies in promoter and flanking DNA sequences, the genes within this locus have different tissue-specific patterns of expression: GH-N is expressed almost exclusively in the somatotrophs of the anterior pituitary; the remaining genes, including CS-A, are expressed in placental syncytiotrophoblast. Previously we proposed that active repression of the placental gene promoters in pituitary GC cells is mediated by upstream 'P' sequences and, specifically, a 263 bp region containing two 'P' sequence elements (PSE-A and PSE-B) and corresponding factors (PSF-A and PSF-B). We have now examined the possibility that PSF-A and PSF-B are members of the nuclear factor (NF)-1 family. Transcripts of NF-1A, NF-1C and NF-1X, but not of NF-1B, were readily detected in GC cells. High-affinity binding of NF-1 to PSE-B, but not to PSE-A, was confirmed by competition of DNA-protein interactions by using NF-1 DNA elements and antibodies. Functionally, a NF-1 element was able to substitute for PSE-B as a promoter-specific repressor in GC cells after gene transfer. However, there was a difference in the magnitude of repression exerted by the NF-1 and PSF-B elements on the CS-A promoter and, with the use of mutations, this difference was shown to be consistent with variations in NF-1-binding sequences. These results indicate that PSF-B, but not PSF-A, is a member of the NF-1 family, which participates in the PSF complex and in the repression of the CS-A promoter in pituitary GC cells.  (+info)

Expression of insulin-like growth factor-I and placental growth hormone mRNA in placentae: a comparison between normal and intrauterine growth retardation pregnancies. (8/83)

Intrauterine growth restriction (IUGR) is generally defined as the pathological restriction of fetal growth resulting in a fetus with birth weight below the 10th percentile for gestational age. Almost 75% of IUGR cases develop during third trimester. Studies on animals (rodents and sheep) as well as humans suggest that insulin-like growth factor-I (IGF-I), under the influence of placental growth hormone (PGH) plays crucial roles in fetal growth regulation during this period. Limited data are available with regard to IGF-I and PGH in placentae of normal and IUGR births. Therefore, in the present study, IGF-I and PGH mRNA expression has been studied in term placentae of normal (n = 10) and IUGR (n = 15) births by in-situ hybridization procedure. Their expression was also studied in first (n = 5) and second (n = 5) trimester placentae obtained from elective termination of normal pregnancies. Both IGF-I and PGH expression were found to be higher in the first and second trimester placentae compared to term placentae in normal pregnancies. However, IUGR term placentae showed increased expression of both IGF-I and PGH mRNA in comparison with normal placentae. Various mechanisms leading to the increased transcription of IGF-I and PGH mRNA in IUGR placenta are discussed. This increased transcription perhaps occurs in response to the reduction in the fetal growth.  (+info)