Application of laser scanning confocal microscopy in the analysis of particle-induced pulmonary fibrosis. (1/38)

Laser scanning confocal microscopy (LSCM) allows us to simultaneously quantitate the degree of lung fibrosis and distinguish various pathological lesions of intact lung tissue. Lucifer Yellow has been shown an ideal fluorescent stain to examine the connective tissue matrix components of embedded lung tissue with LSCM. We evaluated the use of LSCM in quantitating lung fibrosis and compared this procedure with the more traditional method of assessing fibrosis by measuring hydroxyproline, a biochemical assay of collagen. CD/VAF rats were intratracheally dosed with silica (highly fibrogenic), Fe2O3 (non-fibrogenic), and saline (vehicle control) at a high dose of 10-mg/100 g body weight. At 60 days post-instillation, the left lung was dissolved in 6 M HCl and assayed for hydroxyproline. Silica induced increases of 58% and 94% in hydroxyproline content over the Fe2O3 and control groups, respectively. The right lung lobes were fixed, sectioned into blocks, dehydrated, stained with Lucifer Yellow (0.1 mg/ml), and embedded in Spurr plastic. Using LSCM and ImageSpace software, the tissue areas of ten random scans from ten blocks of tissue for each of the three groups were measured, and three-dimensional reconstructions of random areas of lung were generated. The silica group showed increases of 57% and 60% in the lung areas stained by Lucifer Yellow over the Fe2O3 and control groups, respectively. Regression analysis of hydroxyproline vs. lung tissue area demonstrated a significant positive correlation (p < 0.05) with a correlation coefficient of 0.91. Histological analysis of right lung tissue revealed a marked degree of granulomatous interstitial pneumonitis for the silica group, which was absent in the Fe2O3 and control groups. No significant differences (p < 0.05) in hydroxyproline content and measured tissue area were observed between the Fe2O3 and control groups. LSCM, and its associated advanced image analysis and three-dimensional capabilities, is an alternative method to both quickly quantitate and examine fibrotic lung disease without physical disruption of the tissue specimen.  (+info)

A technique for the evaluation of failed fallopian tube ligation with metal clips. (2/38)

The evaluation of fallopian tubes after failed tubal ligation can be difficult because conventional histopathological techniques are unable to section the metal clips when in situ. Once the clips have been removed, any evidence of tube patency is lost. This report describes a technique of embedding and sectioning that enables sections to be made while the metal clips are still in situ. This is a modification of a method first described to embed mineralised bone and involves the use of plastic embedding and a diamond saw. Using this technique, a permanent record is made of the tube location and patency.  (+info)

Co-localization of multiple antigens and specific DNA. A novel method using methyl methacrylate-embedded semithin serial sections and catalyzed reporter deposition. (3/38)

Co-localization of proteins and nucleic acid sequences by in situ hybridization and immunohistochemistry is frequently difficult as the process necessary to detect the target structure of one technique may negatively affect the target of the other. Morphological impairment may also limit the application of the two techniques on sensitive tissue. To overcome these problems we developed a method to perform in situ hybridization and immunohistochemistry on semithin sections of methyl methacrylate-embedded tissue. Microwave-stimulated antigen retrieval, signal amplification by catalyzed reporter deposition, and fluorescent dyes were used for both techniques, yielding high sensitivity and excellent morphological preservation compared to conventional paraffin sections. Co-localization of in situ hybridization and immunohistochemistry signals with high morphological resolution was achieved on single sections as well as on adjacent multiple serial sections, using computerized image processing. The latter allowed for the co-localization of multiple antigens and a specific DNA sequence at the same tissue level. The method was successfully applied to radiation bone marrow chimeric rats created by transplanting wild-type Lewis rat bone marrow into TK-tsa transgenic Lewis rats, in an attempt to trace and characterize TK-tsa transgenic cells. It also proved useful in the co-localization of multiple antigens in peripheral nerve biopsies.  (+info)

Cold-temperature plastic resin embedding of liver for DNA- and RNA-based genotyping. (4/38)

The standard practice of tissue fixation in 10% formalin followed by embedding in paraffin wax preserves cellular morphology at the expense of availability and quality of DNA and RNA. The negative effect on cellular constituents results from a combination of extensive cross-linking and strand scission of DNA, RNA, and proteins induced by formaldehyde as well as RNA loss secondary to ubiquitous RNase activity and negative effects of high temperature exposure during paraffin melting, microscopic section collection, and tissue adherence to glass slides. An effective strategy to correlate cellular phenotype with molecular genotype involves microdissection of tissue sections based on specific histopathological features followed by genotyping of minute representative samples for specific underlying molecular alterations. Currently, this approach is limited to short-length polymerase chain reaction amplification (<250 bp) of DNA, due to the negative effects of standard tissue fixation and processing. To overcome this obstacle and permit both cellular morphology and nucleic acid content to be preserved to the fullest extent, we instituted a system of cold-temperature plastic resin embedding based on the use of the water-miscible methyl methacrylate polymer known as Immunobed (Polysciences, Warminster, PA). The system is simple, easy to adapt to clinical practice, and cost-effective. Immunobed tissue sections demonstrate a cellular appearance equivalent or even superior to that of standard tissue sections. Moreover, thin sectioning (0.5-1.0 microm thickness) renders ultrastructural evaluation feasible on plastic-embedded blocks. Tissue microdissection is readily performed, yielding high levels of long DNA and RNA for genomic and transcription-based correlative molecular analysis. We recommend the use of Immunobed or similar products for use in molecular anatomical pathology.  (+info)

Three-dimensional analysis of nephrogenesis in the neonatal rat kidney: light and scanning electron microscopic studies. (5/38)

In order to clarify the process of renal development more precisely than previously, the present study observed the rat neonatal kidney by scanning electron microscopy (SEM) of KOH digested tissue as well as by light microscopy of plastic sections. In the subcapsular region, aggregation of the mesenchymal cells was closely associated with the upper side of the ureteric duct ampulla. These mesenchymal cells projected a number of fine irregular processes at the basal portion facing the ureteric duct. A spherical cluster transformed from the mesenchymal cell aggregation was found on the lower side of the terminal ampulla, and was differentiated into the renal vesicle. Some cells at the top of the renal vesicle formed a cone-shaped projection and invaded the ureteric duct ampulla, forming a connection with it. In the advanced stage, a shallow transverse cleft appeared on the outer lateral side of the renal vesicle, and a second cleft was formed on the opposite side close to the junction between the renal vesicle and the ampulla. As the two clefts deepened, the vesicle assumed the well-known S-shaped body. In the advanced S-shaped body, the lower limb became cup-shaped, while the segment between the middle and lower limbs of the "S" elongated to form a tubular structure (i.e., the prospective proximal tubule and Henle's loop). The upper limb of the "S" also increased its length to form a distal tubule. The middle limb of the "S", however, was attached firmly to the cup-shaped lower limb (i.e., the prospective renal corpuscle) and was considered to become the macula densa of the mature nephron. In the maturing renal corpuscle, irregularly shaped cells were observed as a sheet-like aggregation at its vascular pole and were continuous with the vascular smooth muscle cells. These findings will help toward a better understanding of the morphological complexities of nephrogenesis.  (+info)

Estimating the size of the capillary-to-fiber interface in skeletal muscle: a comparison of methods. (6/38)

Current evidence suggests that the size of the capillary-to-fiber (C/F) interface is a major determinant of O2 flux into muscle fibers, and methods have been developed for estimating the size of this region via the C/F perimeter ratio in perfusion-fixed material (Mathieu-Costello O, Ellis CG, Potter RF, MacDonald IC, and Groom AC. Am J Physiol Heart Circ Physiol 261: H1617-H1625, 1991) and the quotient of the individual, fiber-based C/F number ratio and fiber perimeter (C/F perimeter exchange index) in muscle biopsies (Hepple RT. Can J Appl Physiol 22: 11-22, 1997). The purpose of this study was to compare the two methods and examine how differences in muscle tissue preparation between perfusion fixation and frozen biopsy can influence the estimate of the size of the C/F interface. The left medial gastrocnemius muscle of nine purpose-bred dogs was perfusion fixed in situ, and a sample from the midportion of the midbelly was processed for microscopy. A corresponding sample from the right gastrocnemius muscle obtained by open biopsy in six of the nine animals was frozen for histochemistry. A significant correlation was found between the two estimates of the size of the C/F interface in the same sections of perfusion-fixed material (r = 0.75, P < 0.05). However, estimates of the size of the C/F interface were smaller in biopsies than perfusion-fixed material, and there was no significant relationship between the estimates in the two preparations. This was due to differences in fiber size (33% larger fiber cross-sectional area in biopsy material after normalization for sarcomere length; P < 0.05) and muscle sampling between the two tissue preparations.  (+info)

Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. (7/38)

The cell envelope architectures and cytoplasmic structures of Mycobacterium aurum CIPT 1210005, M. fortuitum, M. phlei 425, and M. thermoresistible ATCC 19527 were compared by conventional embedding and freeze-substitution methods. To ascertain the integrity of cells during each stage of the processing regimens, [1-14C]acetate was incorporated into the mycolic acids of mycobacterial walls, and the extraction of labeled mycolic acids was monitored by liquid scintillation counting. Radiolabeled mycolic acids were extracted by both processing methods; however, freeze-substitution resulted in the extraction of markedly less radiolabel. During conventional processing of cells, most of the radiolabel was extracted during the dehydration stage, whereas postsubstitution washes in acetone yielded the greatest loss of radiolabel during freeze-substitution. Conventional embedding frequently produced cells with condensed fibrous nucleoids and occasional mesosomes. Their cell walls were relatively thick (approximately 25 nm) but lacked substance. Freeze-substituted cells appeared more robust, with well-dispersed nucleoids and ribosomes. The walls of all species were much thinner than those of their conventionally processed counterparts, but these stained well, which was an indication of more wall substance; the fabric of these walls, in particular the plasma membrane, appeared highly condensed and tightly apposed to the peptidoglycan. Some species possessed a thick, irregular outer layer that was readily visualized in the absence of exogenous stabilizing agents by freeze-substitution. Since freeze-substituted mycobacteria retained a greater percentage of mycolic acids in their walls, and probably other labile wall and cytoplasmic constituents, we believe that freeze-substitution provides a more accurate image of structural organization in mycobacteria than that achieved by conventional procedures.  (+info)

Prediction of cerebral ischemia by ophthalmoscopy after carotid occlusion in gerbils. (8/38)

BACKGROUND AND PURPOSE: The Mongolian gerbil provides a unique model of unilateral focal cerebral ischemia because of the lack of posterior communicating arteries in all gerbils as well as an absence of an anterior communicating artery in approximately 20% of the gerbil population. It is unclear how to identify unequivocably the subpopulation of animals that would suffer a severe focal cerebral ischemia after unilateral carotid occlusion. METHODS: Ninety-three male gerbils were exposed to unilateral occlusion of the right common carotid artery. The severity of neuronal loss was evaluated histologically in gerbils selected as having significant focal ischemia based on either behavioral criteria (i.e., the demonstration of stereotypical behavior within 1 hour after occlusion) or ophthalmoscopic criteria (i.e., interruption of the retinal arterial perfusion within 10 minutes of carotid ligation as assessed with an ophthalmoscope). After 3 hours of unilateral carotid occlusion, cerebral blood flow was reinstated for 24 hours before fixation for histological analysis. The viability of the CA1 region of the hippocampus, lateral cortex, and medial cortex was scored on a scale of 0-4 based on the percentage of apparent neuronal loss (e.g., 0, no damage; 4, > 75% damage (the Viability Index). RESULTS: Twenty-eight percent of the gerbils met the behavioral selection criteria, and 17% met the ophthalmoscopic criteria. In the specimens selected by behavioral criteria (n = 7), 30% demonstrated no evidence of postischemic neuronal loss; the mean +/- SEM Viability Index scores for CA1, lateral cortex, and medial cortex were 1.6 +/- 0.6, 1.0 +/- 0.3, and 0.3 +/- 0.2, respectively. Of the animals selected by ophthalmoscopic criteria (n = 12), 100% had severe ischemic tissue damage to the ipsilateral hemisphere; the Viability Index scores for CA1, lateral cortex, and medial cortex were 3.5 +/- 0.1, 3.1 +/- 0.2, and 1.2 +/- 0.2, respectively; all scores were significantly larger than those observed in the behaviorally selected group. CONCLUSIONS: Selection of animals by ophthalmoscopic criteria provides a reliable, consistent method to predict animals with severe focal cerebral ischemia.  (+info)