Low temperature and pressure stability of picornaviruses: implications for virus uncoating. (1/434)

The family Picornaviridae includes several viruses of great economic and medical importance. Poliovirus replicates in the human digestive tract, causing disease that may range in severity from a mild infection to a fatal paralysis. The human rhinovirus is the most important etiologic agent of the common cold in adults and children. Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases in cattle. These viruses have in common a capsid structure composed of 60 copies of four different proteins, VP1 to VP4, and their 3D structures show similar general features. In this study we describe the differences in stability against high pressure and cold denaturation of these viruses. Both poliovirus and rhinovirus are stable to high pressure at room temperature, because pressures up to 2.4 kbar are not enough to promote viral disassembly and inactivation. Within the same pressure range, FMDV particles are dramatically affected by pressure, with a loss of infectivity of more than 4 log units observed. The dissociation of polio and rhino viruses can be observed only under pressure (2.4 kbar) at low temperatures in the presence of subdenaturing concentrations of urea (1-2 M). The pressure and low temperature data reveal clear differences in stability among the three picornaviruses, FMDV being the most sensitive, polio being the most resistant, and rhino having intermediate stability. Whereas rhino and poliovirus differ little in stability (less than 10 kcal/mol at 0 degrees C), the difference in free energy between these two viruses and FMDV was remarkable (more than 200 kcal/mol of particle). These differences are crucial to understanding the different factors that control the assembly and disassembly of the virus particles during their life cycle. The inactivation of these viruses by pressure (combined or not with low temperature) has potential as a method for producing vaccines.  (+info)

A new picornavirus isolated from bank voles (Clethrionomys glareolus). (2/434)

A previously unknown picornavirus was isolated from bank voles (Clethrionomys glareolus). Electron microscopy images and sequence data of the prototype isolate, named Ljungan virus, showed that it is a picornavirus. The amino acid sequences of predicted Ljungan virus capsid proteins VP2 and VP3 were closely related to the human pathogen echovirus 22 (approximately 70% similarity). A partial 5' noncoding region sequence of Ljungan virus showed the highest degree of relatedness to cardioviruses. Two additional isolates were serologically and molecularly related to the prototype.  (+info)

Absence of internal ribosome entry site-mediated tissue specificity in the translation of a bicistronic transgene. (3/434)

The 5' noncoding regions of the genomes of picornaviruses form a complex structure that directs cap-independent initiation of translation. This structure has been termed the internal ribosome entry site (IRES). The efficiency of translation initiation was shown, in vitro, to be influenced by the binding of cellular factors to the IRES. Hence, we hypothesized that the IRES might control picornavirus tropism. In order to test this possibility, we made a bicistronic construct in which translation of the luciferase gene is controlled by the IRES of Theiler's murine encephalomyelitis virus. In vitro, we observed that the IRES functions in various cell types and in macrophages, irrespective of their activation state. In vivo, we observed that the IRES is functional in different tissues of transgenic mice. Thus, it seems that the IRES is not an essential determinant of Theiler's virus tropism. On the other hand, the age of the mouse could be critical for IRES function. Indeed, the IRES was found to be more efficient in young mice. Picornavirus IRESs are becoming popular tools in transgenesis technology, since they allow the expression of two genes from the same transcription unit. Our results show that the Theiler's virus IRES is functional in cells of different origins and that it is thus a broad-spectrum tool. The possible age dependency of the IRES function, however, could be a drawback for gene expression in adult mice.  (+info)

Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. (4/434)

The complete RNA genome of avian encephalomyelitis virus (AEV) has been molecularly cloned and sequenced. This revealed AEV to be a member of the Picornaviridae and consequently it is the first avian picornavirus for which the genome has been sequenced. Excluding the poly(A) tail the genome comprises 7032 nucleotides, which is shorter than that of any mammalian picornavirus sequenced to date. An open reading frame commencing at nucleotide 495 and terminating at position 6896 (6402 nucleotides) potentially encodes a polyprotein of 2134 amino acids. The polyprotein sequence has 39% overall amino acid identity with hepatitis A virus (HAV; genus Hepatovirus), compared to 19 to 21% for viruses from the other five picornavirus genera. Eleven cleavage products were predicted. The highest identity (49%) with HAV was in the P1 region, encoding the capsid proteins. The 5' and 3' untranslated regions (UTRs) comprise 494 and 136 nucleotides, respectively. The 5' UTR is the shortest of any picornavirus sequenced to date and, unlike HAV, it does not contain a long polypyrimidine tract.  (+info)

The nucleotide sequence of sacbrood virus of the honey bee: an insect picorna-like virus. (5/434)

We have determined the nucleotide sequence of sacbrood virus (SBV), which causes a fatal infection of honey bee larvae. The genomic RNA of SBV is longer than that of typical mammalian picornaviruses (8832 nucleotides) and contains a single, large open reading frame (179-8752) encoding a polyprotein of 2858 amino acids. Sequence comparison with other virus polyproteins revealed regions of similarity to characterized helicase, protease and RNA-dependent RNA polymerase domains; structural genes were located at the 5' terminus with non-structural genes at the 3' end. Picornavirus-like agents of insects have two distinct genomic organizations; some resemble mammalian picornaviruses with structural genes at the 5' end and non-structural genes at the 3' end, and others resemble caliciviruses in which this order is reversed; SBV thus belongs to the former type. Sequence comparison suggested that SBV is distantly related to infectious flacherie virus (IFV) of the silk worm, which possesses an RNA of similar size and gene order.  (+info)

The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. (6/434)

The internal ribosome entry segment (IRES) of picornaviruses consists of approximately 450 nt of 5'-untranslated region, terminating at the 3' end with an approximately 25 nt element consisting of an absolutely conserved UUUC motif followed by a more variable pyrimidine-rich tract and G-poor spacer, and finally an AUG triplet, which is considered to be the actual ribosome entry site. Events following entry at this site differ among picornaviruses: in encephalomyocarditis virus (EMCV) virtually all ribosomes initiate translation at this site (AUG-11); in foot-and-mouth-disease virus (FMDV), one-third of the ribosomes initiate at this AUG (the Lab site), and the rest at the next AUG 84 nt downstream (Lb site); and in poliovirus (PV), the AUG at the 3' end of the IRES (at nt 586 in PV type 1) is considered to be a silent entry site, with all ribosomes initiating translation at the next AUG downstream (nt 743). To investigate what determines this different behavior, chimeras were constructed with a crossover at the conserved UUUC motif: the body of the IRES, the sequences upstream of this UUUC motif, was derived from one species, and the downstream sequences from another. When the body of the FMDV or PV IRESes was replaced by that of EMCV, there was a marked increase in the absolute and relative frequency of initiation at the upstream AUG, the Lab site of FMDV and 586AUG of PV, respectively. In contrast, when the body of the EMCV IRES was replaced by that of PV, initiation occurred with no preference at three AUGs: the normal site (AUG-11), AUG-10 situated 8 nt upstream, and AUG-12, which is 12 nt downstream. Thus although the context of the AUG at the 3' end of the IRES may influence initiation frequency at this site, as was shown by improving the context of 586AUG of PV, the behavior of the ribosome is also highly dependent on the nature of the upstream IRES. Delivery of the ribosome to this AUG in an initiation-competent manner is particularly efficient and accurate with the EMCV IRES.  (+info)

Picornavirus receptor down-regulation by plasminogen activator inhibitor type 2. (7/434)

Therapeutic interference with virus-cell surface receptor interactions represents a viable antiviral strategy. Here we demonstrate that cytoplasmic expression of the serine protease inhibitor (serpin), plasminogen activator inhibitor type 2 (PAI-2), affords a high level of protection from lytic infection by multiple human picornaviruses. The antiviral action of PAI-2 was mediated primarily through transcriptional down-regulation of the following virus receptors: intercellular adhesion molecule 1 (ICAM-1, a cellular receptor for the major group of rhinoviruses), decay-accelerating factor (a cellular receptor for echoviruses and coxsackieviruses), and to a lesser extent the coxsackie-adenovirus receptor protein (a cellular receptor for group B coxsackieviruses and group C adenoviruses). Expression of related cell surface receptors, including membrane cofactor protein and the poliovirus receptor, remained unaffected. These findings suggest that PAI-2 and/or related serpins may form the basis of novel antiviral strategies against picornavirus infections and also therapeutic interventions against ICAM-1-mediated respiratory inflammation.  (+info)

Sequence analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. (8/434)

The majority of the genomic sequence of a porcine enterovirus serotype 1 (PEV-1) isolate was determined. The genome was found to contain a large open reading frame which encoded a leader protein prior to the capsid protein region. This showed no sequence identity to other picornavirus leader regions and the sequence data suggested that it does not possess proteolytic activity. The 2A protease was small and showed considerable sequence identity to the aphthoviruses and to equine rhinovirus serotype 2. The 2A/2B junction possessed the typical cleavage site (NPG/P) exhibited by these viruses. The other proteins shared less than 40% sequence identity with equivalent proteins from other picornavirus genera. Phylogenetic analyses of the P1 and 3D sequences indicated that this virus forms a distinct branch of the family Picornaviridae. On the basis of results presented in this paper PEV-1 has been assigned to a new picornavirus genus. The phylogeny of the virus in relation to other picornaviruses is discussed.  (+info)