Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors. (1/1388)

The membrane-bound guanylyl cyclase in rod photoreceptors is activated by guanylyl cyclase-activating protein 1 (GCAP-1) at low free [Ca2+]. GCAP-1 is a Ca2+-binding protein and belongs to the superfamily of EF-hand proteins. We created an oligopeptide library of overlapping peptides that encompass the entire amino acid sequence of GCAP-1. Peptides were used in competitive screening assays to identify interaction regions in GCAP-1 that directly bind the guanylyl cyclase in bovine photoreceptor cells. We found four regions in GCAP-1 that participate in regulating guanylyl cyclase. A 15-amino acid peptide located adjacent to the second EF-hand motif (Phe73-Lys87) was identified as the main interaction domain. Inhibition of GCAP-1-stimulated guanylyl cyclase activity by the peptide Phe73-Lys87 was completely relieved when an excess amount of GCAP-1 was added. An affinity column made from this peptide was able to bind a complex of photoreceptor guanylyl cyclase and tubulin. Using an anti-GCAP-1 antibody, we coimmunoprecipitated GCAP-1 with guanylyl cyclase and tubulin. Complex formation between GCAP-1 and guanylyl cyclase was observed independent of [Ca2+]. Our experiments suggest that there exists a tight association of guanylyl cyclase and tubulin in rod outer segments.  (+info)

Potency and mechanism of action of E4021, a type 5 phosphodiesterase isozyme-selective inhibitor, on the photoreceptor phosphodiesterase depend on the state of activation of the enzyme. (2/1388)

The ability of inhibitors selective for the type 5 phosphodiesterase isozyme (PDE5) to act on the photoreceptor PDE isozyme (PDE6, the central effector enzyme for visual transduction) is poorly understood. Because PDE5 inhibitors are currently used as therapeutic agents, it is important to assess the potency and mechanism of action of this class of PDE inhibitor on PDE6. We show that E4021 (sodium 1-[6-chloro-4-(3, 4-methylenedioxybenzyl)-aminoquinazolin-2-yl]piperidine-4-ca rboxylate sesquihydrate) inhibits activated PDE6 (KI = 1.7 nM) as potently as PDE5. This makes E4021 the most potent inhibitor of PDE6 discovered to date. The effectiveness of E4021 to inhibit nonactivated PDE6 (with bound inhibitory gamma subunits) is reduced 40-fold compared with the activated enzyme. Furthermore, at intermediate E4021 concentrations and high cGMP concentrations, nonactivated PDE undergoes activation of cGMP hydrolysis rather than inhibition. We demonstrate direct competition of E4021 and the gamma subunits for binding to the catalytic site. Measurements of cGMP binding to noncatalytic regulatory sites on the catalytic subunits of PDE6 rule out an allosteric effect of E4021 by direct binding to these noncatalytic sites. We conclude that E4021 is a competitive inhibitor of cGMP hydrolysis and that the gamma subunit also competes with both E4021 and substrate for catalytic site binding. An understanding of the effects of PDE5-targeted drugs on retinal PDE6 requires a knowledge of the complex interactions among substrate, drug, and inhibitory gamma subunit at the catalytic site of both nonactivated and activated forms of PDE6.  (+info)

Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats. (3/1388)

We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1. 5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies.  (+info)

Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. (4/1388)

In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of apo-cellular retinaldehyde-binding protein. This retinoid-binding protein may drive the reaction by mass action, overcoming the thermodynamically unfavorable isomerization. Furthermore, this 11-cis-retinol/11-cis-retinal-specific binding protein potently stimulates hydrolysis of endogenous 11-cis-retinyl esters but has no effect on hydrolysis of all-trans-retinyl esters. Apo-cellular retinaldehyde-binding protein probably exerts its effect by trapping the 11-cis-retinol product. When retinoid-depleted retinal pigment epithelial microsomes were preincubated with different amounts of all-trans-retinol to form all-trans-retinyl esters and then [3H]all-trans-retinol was added, as predicted, the specific radioactivity of [3H]all-trans-retinyl esters increased during subsequent reaction. However, the specific radioactivity of newly formed 11-cis-retinol stayed constant during the course of the reaction, and it was largely unaffected by expansion of the all-trans-retinyl ester pool during the preincubation. The absence of dilution establishes that most of the ester pool does not participate in isomerization, which in turn suggests that a retinoid intermediate other than all-trans-retinyl ester is on the isomerization reaction pathway.  (+info)

Intracellular Ca2+ concentrations in cultured chicken photoreceptor cells: sustained elevation in depolarized cells and the role of dihydropyridine-sensitive Ca2+ channels. (5/1388)

PURPOSE: Retinal photoreceptor cells are tonically depolarized in darkness. Ca2+ influx in darkness plays a critical role in the regulation of neurotransmitter release and melatonin synthesis in these sensory cells. The purpose of the present study was to examine the dynamic changes of intracellular Ca2+ concentrations ([Ca2+]in ) in response to a tonic depolarizing stimulus and to determine the role of dihydropyridine-sensitive calcium channels in the response. METHODS: Photoreceptor cells were prepared from embryonic chick retina and cultured for 6-12 days. Cells were depolarized by exposure to 35 mM extracellular K+. [Ca2+]in of individual photoreceptor cell bodies/synaptic terminals was determined by ratiometric fura-2 image analysis. RESULTS: Chemical depolarization with 35 mM [K+]out greatly increased [Ca2+]in of inner segment/synaptic terminal regions of photoreceptors. The increase usually reached a plateau after the first few minutes of stimulation and was sustained for prolonged periods (>2 h) in the presence of high K+. When the extracellular K+ concentration was reduced, the [Ca2+]in rapidly returned to the basal level. Substitution of 1 mM CoCl2 for CaCl2 in the superfusion medium rapidly and reversibly reduced the [Ca2+]in of depolarized photoreceptor cells. Antagonists of L-type Ca2+ channels, nitrendipine and nifedipine, inhibited the K+-evoked increase of [Ca2+]in. Bay K 8644, a dihydropyridine Ca2+ channel agonist, potentiated the increase of [Ca2+]in elicited by high K+. In some cells, Bay K 8644 alone increased [Ca2+]in under basal conditions. CONCLUSIONS: The increase of [Ca2+]in elicited by depolarization with 35 mM extracellular K+ is due to influx of calcium through the dihydropyridine-sensitive voltage-gated channels. Intracellular [Ca2+] remains elevated for extended periods of time during tonic depolarization. This sustained response requires continuous Ca2+ channel activity.  (+info)

Formate-induced inhibition of photoreceptor function in methanol intoxication. (6/1388)

Formic acid is the toxic metabolite responsible for the retinal and optic nerve toxicity produced in methanol intoxication. Previous studies in our laboratory have documented formate-induced retinal dysfunction and histopathology in a rodent model of methanol intoxication. The present studies define the time and concentration dependence of formate-induced retinal toxicity in methanol-intoxicated rats. Retinal function was assessed 24, 48, and 72 h after the initial dose of methanol by flicker electroretinographic measurements. Retinal histopathology was assessed at the same time intervals. Rod- and cone-mediated electroretinogram (ERG) responses were attenuated in a formate concentration- and time-dependent manner, and both retinal sensitivity and maximal responsiveness to light were diminished. Attenuation of UV-cone-mediated responses was temporally delayed in comparison to the functional deficits observed in the 15 Hz/510 nm responses, which have a rod-mediated component and occurred at significantly higher formate concentrations. Both 15 Hz/510 nm and UV-cone-mediated ERG responses were undetectable by 72 h; however, if light intensity was increased, a retinal ERG response could be recorded, indicating that photoreceptor function was profoundly attenuated, but not abolished, under these intoxication conditions. Functional changes preceded structural alterations. Histopathological changes were most pronounced in the outer retina with evidence of inner segment swelling, photoreceptor mitochondrial disruption, and the appearance of fragmented photoreceptor nuclei in the outer nuclear layer. The nature of both the functional and structural alterations observed are consistent with formate-induced inhibition of mitochondrial energy production, resulting in photoreceptor dysfunction and pathology.  (+info)

Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations. (7/1388)

PURPOSE: To determine whether the degenerating photoreceptors in nervous (nr/nr) and Purkinje cell degeneration (pcd/pcd) mutant mice are more susceptible to the damaging effects of constant light than those in age-matched normal mice. METHODS: Beginning at two ages for each mutant, albino nr/nr and pcd/pcd mice were placed into constant fluorescent light at an illuminance of 115 foot-candles to 130 foot-candles for a period of 1 week. Age-matched (usually littermate) normal (+/-) mice were exposed at the same time. The degree of photoreceptor cell loss was quantified histologically by obtaining a mean outer nuclear layer thickness for each animal. The light-exposed mice were compared with age-matched mutant and normal mice that were maintained in cyclic light. RESULTS: The homozygous mutants at each age showed a significantly greater loss of photoreceptor cells caused by constant light exposure than did the normal +/- mice in the same period of light exposure. The nr/nr and pcd/pcd mutants lost two to three times the number of photoreceptor cells than did the +/- mice during the constant light exposure. CONCLUSIONS: It has long been thought that excessive light may be harmful to patients with inherited or age-related photoreceptor degenerations. The present data add to other experimental evidence suggesting that photoreceptors already undergoing inherited or other forms of degeneration may be particularly susceptible to the damaging effects of excessive light.  (+info)

Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. (8/1388)

Circadian rhythms of mammals are entrained by light to follow the daily solar cycle (photoentrainment). To determine whether retinal rods and cones are required for this response, the effects of light on the regulation of circadian wheel-running behavior were examined in mice lacking these photoreceptors. Mice without cones (cl) or without both rods and cones (rdta/cl) showed unattenuated phase-shifting responses to light. Removal of the eyes abolishes this behavior. Thus, neither rods nor cones are required for photoentrainment, and the murine eye contains additional photoreceptors that regulate the circadian clock.  (+info)