Nickel-catalyzed coupling of alkenes, aldehydes, and silyl triflates. (49/307)

A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes, and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed.  (+info)

Pseudotetrahedral manganese complexes supported by the anionic tris(phosphino)borate ligand [PhBP(iPr)3]. (50/307)

This paper presents aspects of the coordination chemistry of mono- and divalent manganese complexes supported by the anionic tris(phosphino)borate ligand, [PhBP(i)(Pr)3] (where [PhBP(i)(Pr)3] = [PhB(CH(2)P(i)Pr2)3]-). The Mn(II) halide complexes, [PhBP(i)(Pr)3]MnCl (1) and [PhBP(i)(Pr)3]MnI (2), have been characterized by X-ray diffraction, SQUID magnetometry, and EPR spectroscopy. Compound 2 serves as a precursor to a series of Mn azide, alkyl, and amide species: [PhBP(i)(Pr)3]Mn(N3) (3), [PhBP(i)(Pr)3]Mn(CH2Ph) (4), [PhBP(i)(Pr)3]Mn(Me) (5), [PhBP(i)(Pr)3]Mn(NH(2,6-(i)Pr2-C6H3)) (6), [PhBP(i)(Pr)3]Mn(dbabh) (7), and [PhBP(i)(Pr)3]Mn(1-Ph(isoindolate)) (8). The complexes 2-8 feature a divalent-metal center and are pseudotetrahedral. They collectively represent an uncommon structural motif for low-coordinate, polyphosphine-supported Mn complexes. Two Mn(I) species have also been prepared. These include the Tl-Mn adduct [PhBP(i)(Pr)3]Tl-MnBr(CO)4 (9) and the octahedral complex [PhBP(i)(Pr)3]Mn(CN(t)Bu)3 (10). Some of our initial synthetic efforts to generate [PhBP(i)(Pr)3]MnN(x) species are briefly described, as are DFT studies that probe the electronic viability of these types of multiply bonded target structures.  (+info)

Cyclic C-amino phosphorus ylides as a source of bidentate heteroditopic ligands (phosphine/aminocarbene) for transition metals. (51/307)

In contrast with most of their congeners, acyclic and cyclic C-amino phosphorus ylides behave as genuine carbene and phosphine transfer agents for transition metal centers. They allow the facile synthesis of a variety of metal complexes that feature heteroditopic ligands, such as 1,6-(phosphine)(aminocarbene) systems with a biphenyl backbone.  (+info)

Supramolecular allosteric cofacial porphyrin complexes. (52/307)

Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (RhI or CuI sites) and two cofacially aligned porphyrins (ZnII sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, "condensed" or "open". Combining the ether-phosphine ligand with the appropriate RhI or CuI transition-metal precursors results in "open" macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their "open" macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the "open" macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.  (+info)

Disruption of iron homeostasis increases phosphine toxicity in Caenorhabditis elegans. (53/307)

The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.  (+info)

Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. (54/307)

BACKGROUND: With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. PRINCIPAL FINDINGS: Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20 degrees C has been determined with an LC(50) of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20 degrees C is 600 times more potent than phosphine (LC(50) 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, +info)

Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. (55/307)

An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy.  (+info)

Potencies of phosphine peptide inhibitors of mammalian thimet oligopeptidase and neurolysin on two bacterial pz peptidases. (56/307)

Pz peptidases A and B, from a thermophile Geobacillus collagenovorans MO-1, recognize collagen-specific tripeptide units (Gly-Pro-Xaa). They share similarities in function but extremely low identities in primary sequence with mammalian thimet oligopeptidase (TOP) and neurolysin. Three phosphine peptide inhibitors that selectively inhibit TOP and neurolysin on two bacterial Pz peptidases were investigated. They showed potent inhibition of both Pz peptidases in a range from 10 to 100 nM.  (+info)