Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. (57/7586)

Basic cellular processes such as electron transport in photosynthesis and respiration require the precise control of iron homeostasis. To mobilize iron, plants have evolved at least two different strategies. The nonproteinogenous amino acid nicotianamine which is synthesized from three molecules of S-adenosyl-L-methionine, is an essential component of both pathways. This compound is missing in the tomato mutant chloronerva, which exhibits severe defects in the regulation of iron metabolism. We report the purification and partial characterization of the nicotianamine synthase from barley roots as well as the cloning of two corresponding gene sequences. The function of the gene sequence has been verified by overexpression in Escherichia coli. Further confirmation comes from reduction of the nicotianamine content and the exhibition of a chloronerva-like phenotype due to the expression of heterologous antisense constructs in transgenic tobacco plants. The native enzyme with an apparent Mr of approximately 105 000 probably represents a trimer of S-adenosyl-L-methionine-binding subunits. A comparison with the recently cloned chloronerva gene of tomato reveals striking sequence homology, providing support for the suggestion that the destruction of the nicotianamine synthase encoding gene is the molecular basis of the tomato mutation.  (+info)

Aberrant nodulation response of Vigna umbellata to a Bradyrhizobium japonicum NodZ mutant and nodulation signals. (58/7586)

The (Brady)rhizobium nodulation gene products synthesize lipo-chitin oligosaccharide (LCO) signal molecules that induce nodule primordia on legume roots. In spot inoculation assays with roots of Vigna umbellata, Bradyrhizobium elkanii LCO and chemically synthesized LCO induced aberrant nodule structures, similar to the activity of these LCOs on Glycine soja (soybean). LCOs containing a pentameric chitin backbone and a reducing-end 2-O-methyl fucosyl moiety were active on V. umbellata. In contrast, the synthetic LCO-IV(C16:0), which has previously been shown to be active on G. soja, was inactive on V. umbellata. A B. japonicum NodZ mutant, which produces LCO without 2-O-methyl fucose at the reducing end, was able to induce nodule structures on both plants. Surprisingly, the individual, purified, LCO molecules produced by this mutant were incapable of inducing nodule formation on V. umbellata roots. However, when applied in combination, the LCOs produced by the NodZ mutant acted cooperatively to produce nodulelike structures on V. umbellata roots.  (+info)

A new peroxidase cDNA from white clover: its characterization and expression in root tissue challenged with homologous rhizobia, heterologous rhizobia, or Pseudomonas syringae. (59/7586)

Temporal reverse transcription-polymerase chain reaction (RT-PCR) expression analyses were performed on Trprx2, a new white clover peroxidase, with roots challenged with homologous rhizobia, heterologous rhizobia, and a pathogen, Pseudomonas syringae. Low levels of Trprx2 expression were evident in all rhizobial treatments but in P.syringae-treated clover background expression was dramatically reduced within 1 h and was undetectable in treatments inoculated for more than 3 h. Spraying 4 mM salicylic acid onto seedlings increased Trprx2 expression. These data suggest a defensive role for Trprx2 in white clover and indicate active defense suppression by the pathogen.  (+info)

Formation of 14,15-hepoxilins of the A(3) and B(3) series through a 15-lipoxygenase and hydroperoxide isomerase present in garlic roots. (60/7586)

We report herein for the first time the formation by freshly grown garlic roots and the structural characterization of 14,15-epoxide positional analogs of the hepoxilins formed via the 15-lipoxygenase-induced oxygenation of arachidonic acid. These compounds are formed through the combined actions of a 15(S)-lipoxygenase and a hydroperoxyeicosatetraenoic acid (HPETE) isomerase. The compounds were formed when either arachidonic acid or 15-HPETE were used as substrates. Both the "A"-type and the "B"-type products are formed although the B-type compounds are formed in greater relative quantities. Chiral phase high performance liquid chromatography analysis confirmed the formation of hepoxilins from 15(S)- but not 15(R)-HPETE, indicating high stereoselectivity of the isomerase. Additionally, the lipoxygenase was of the 15(S)-type as only 15(S)-hydroxyeicosatetraenoic acid was formed when arachidonic acid was used as substrate. The structures of the products were confirmed by gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives as well as after characteristic epoxide ring opening catalytically with hydrogen leading to dihydroxy products. That 15(S)-lipoxygenase activity is of functional importance in garlic was shown by the inhibition of root growth by BW 755C, a dual cyclooxygenase/lipoxygenase inhibitor and nordihydroguaiaretic acid, a lipoxygenase inhibitor. Additional biological studies were carried out with the purified intact 14(S), 15(S)-hepoxilins, which were investigated for hepoxilin-like actions in causing the release of intracellular calcium in human neutrophils. The 14,15-hepoxilins dose-dependently caused a rise in cytosolic calcium, but their actions were 5-10-fold less active than 11(S), 12(S)-hepoxilins derived from 12(S)-HPETE. These studies provide evidence that 15(S)-lipoxygenase is functionally important to normal root growth and that HPETE isomerization into the hepoxilin-like structure may be ubiquitous; the hepoxilin-evoked release of calcium in human neutrophils, which is receptor-mediated, is sensitive to the location within the molecule of the hydroxyepoxide functionality.  (+info)

Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. (61/7586)

The 2-oxoglutarate dehydrogenase complex (OGDC) in potato (Solanum tuberosum cv. Romano) tuber mitochondria is largely associated with the membrane fraction of osmotically ruptured organelles, whereas most of the other tricarboxylic acid cycle enzymes are found in the soluble matrix fraction. The purification of OGDC from either membrane or soluble matrix fractions resulted in the increasing dependence of its activity on the addition of dihydrolipoamide dehydrogenase (E3). A 30-fold purification of OGDC to apparent homogeneity and with a specific activity of 4.6 micromol/min per mg of protein in the presence of exogenously added E3 was obtained. SDS/PAGE revealed that the purified complex consisted of three major polypeptides with apparent molecular masses of 48, 50 and 105 kDa. Before the gel-filtration purification step, E3 polypeptides of 57 and 58 kDa were identified by immunoreaction as minor proteins associated with OGDC. The N-terminal sequence of the 57 kDa protein was identical with that previously purified as the E3 component of the pyruvate dehydrogenase complex from potato. The 105 kDa protein was identified as the 2-oxoglutarate dehydrogenase subunit of OGDC by N-terminal sequencing. The N-terminal sequences of the 50 and 48 kDa proteins shared 90-95% identity over 20 residues and were identified by sequence similarity as dihydrolipoamide succinyltransferases (OGDC-E2). The incubation of OGDC with [U-(14)C]2-oxoglutarate resulted in the reversible succinylation of both the 48 and the 50 kDa protein bands. Proteins previously reported as subunits of complex I of the respiratory chain from Vicia faba and Solanum tuberosum are proposed to be OGDC-E2 and the possible basis of this association is discussed.  (+info)

Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. (62/7586)

The plant hormone auxin is transported in a polar manner along the shoot-root axis, which requires efflux carriers such as PIN1. Asymmetric localization of PIN1 develops from a random distribution in Arabidopsis early embryogenesis. Coordinated polar localization of PIN1 is defective in gnom embryos. GNOM is a membrane-associated guanine-nucleotide exchange factor on ADP-ribosylation factor G protein (ARF GEF). Thus, GNOM-dependent vesicle trafficking may establish cell polarity, resulting in polar auxin transport.  (+info)

The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. (63/7586)

Development of root nodules, specifically induction of cortical cell division for nodule initiation, requires expression of specific genes in the host and microsymbiont. A full-length cDNA clone and the corresponding genomic clone encoding a MAP (mitogen-activated protein) kinase homolog were isolated from alfalfa (Medicago sativa). The genomic clone, TDY1, encodes a 68.9-kDa protein with 47.7% identity to MMK4, a previously characterized MAP kinase homolog from alfalfa. TDY1 is unique among the known plant MAP kinases, primarily due to a 230 amino acid C-terminal domain. The putative activation motif, Thr-Asp-Tyr (TDY), also differs from the previously reported Thr-Glu-Tyr (TEY) motif in plant MAP kinases. TDY1 messages were found predominantly in root nodules, roots, and root tips. Transgenic alfalfa and Medicago truncatula containing a chimeric gene consisting of 1.8 kbp of 5' flanking sequence of the TDY1 gene fused to the beta-glucuronidase (GUS) coding sequence exhibited GUS expression primarily in the nodule parenchyma, meristem, and vascular bundles, root tips, and root vascular bundles. Stem internodes stained intensely in cortical parenchyma, cambial cells, and primary xylem. GUS activity was observed in leaf mesophyll surrounding areas of mechanical wounding and pathogen invasion. The promoter was also active in root tips and apical meristems of transgenic tobacco. Expression patterns suggest a possible role for TDY1 in initiation and development of nodules and roots, and in localized responses to wounding.  (+info)

Identification of a locus in arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. (64/7586)

Selected nonpathogenic rhizobacteria with biological disease control activity are able to elicit an induced systemic resistance (ISR) response that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Ten ecotypes of Arabidopsis thaliana were screened for their potential to express rhizobacteria-mediated ISR and pathogen-induced SAR against the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). All ecotypes expressed SAR. However, of the 10 ecotypes tested, ecotypes RLD and Wassilewskija (Ws) did not develop ISR after treatment of the roots with nonpathogenic Pseudomonas fluorescens WCS417r bacteria. This nonresponsive phenotype was associated with relatively high susceptibility to Pst infection. The F1 progeny of crosses between the non-responsive ecotypes RLD and Ws on the one hand, and the responsive ecotypes Columbia (Col) and Landsberg erecta (Ler) on the other hand, were fully capable of expressing ISR and exhibited a relatively high level of basal resistance, similar to that of their WCS417r-responsive parent. This indicates that the potential to express ISR and the relatively high level of basal resistance against Pst are both inherited as dominant traits. Analysis of the F2 and F3 progeny of a Col x RLD cross revealed that inducibility of ISR and relatively high basal resistance against Pst cosegregate in a 3:1 fashion, suggesting that both resistance mechanisms are monogenically determined and genetically linked. Neither the responsiveness to WCS417r nor the relatively high level of basal resistance against Pst were complemented in the F1 progeny of crosses between RLD and Ws, indicating that RLD and Ws are both affected in the same locus, necessary for the expression of ISR and basal resistance against Pst. The corresponding locus, designated ISR1, was mapped between markers B4 and GL1 on chromosome 3. The observed association between ISR and basal resistance against Pst suggests that rhizobacteria-mediated ISR against Pst in Arabidopsis requires the presence of a single dominant gene that functions in the basal resistance response against Pst infection.  (+info)