Effects of monoamine uptake inhibitors on extracellular and platelet 5-hydroxytryptamine in rat blood: different effects of clomipramine and fluoxetine. (73/382)

1. The concentration of 5-hydroxytryptamine (5-HT) in rat platelet-free plasma increased significantly 30 min after a single i.p. injection (10 mg kg-1) of each of six inhibitors of the high-affinity 5-HT uptake (fluvoxamine, fluoxetine, alaproclate, paroxetine, sertraline and clomipramine). The increases ranged from 226% to 776% of control values. In contrast, imipramine, desipramine and femoxetine had no significant effect. The increase elicited by paroxetine was dependent on the dose (1, 5 and 10 mg kg-1) and returned to control values after 4 h. That observed after clomipramine was also transient and paralleled the plasma concentration of the drug (Spearman-rank correlation r = 0.43). 2. In vivo, the rat pulmonary vascular endothelium removed trace amounts (8.8 nmol in a bolus) of intravenously injected [14C]-5-HT. Paroxetine pretreatment (10 mg kg-1, 30 min before-hand) reduced this uptake by 73%. 3. Repeated fluoxetine treatments reduced rat whole blood 5-HT concentration (ca. -60% after daily 2 x 5 mg kg-1, i.p. during 14 days). However, plasma (extracellular) 5-HT was not increased. 4. Various repeated treatments with clomipramine (i.p. injections or osmotic minipumps, up to 30 mg kg-1 day-1), failed to decrease rat whole blood 5-HT concentrations. Platelet-free plasma 5-HT was also unchanged, even after treatments yielding plasma clomipramine levels 2.7 times higher than those that increased it acutely. 5. These results indicate that the extracellular pool of 5-HT in rat blood (measured in the platelet-free plasma) is physiologically under the control of high-affinity 5-HT uptake systems.The sustained 5-HT uptake inhibition does not result in an increase of 5-HT in platelet-free plasma, suggesting that adaptative mechanisms are triggered. The distinct long-term effects of the two antidepressants clomipramine and fluoxetine on rat whole blood 5-HT suggest a differential in vivo action on the rat 5-HT uptake.  (+info)

The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. (74/382)

Paroxetine is a selective serotonin reuptake inhibitor possessing anti-depressant activity. Demethylenation of the methylenedioxy phenyl group is the initial step in its metabolism, the liberated carbon appearing in vitro as formate. A radioassay involving [14C-methylenedioxy] paroxetine was developed and used to examine the role of cytochrome P4502D6 in paroxetine metabolism by human liver microsomes. The rate of formate production was much higher in microsomes from an extensive metaboliser of debrisoquine than from a poor metaboliser. Also, demethylenation of paroxetine was inhibited by the quinidine and quinine isomer pair in microsomes from the extensive metaboliser only. These observations strongly suggested that the process was catalysed by the enzyme cytochrome P4502D6. Metabolism could not be completely inhibited by quinidine, the residual activity representing the contribution of at least one other enzyme. The ability of microsomes from a poor metaboliser of debrisoquine to demethylenate paroxetine provided further evidence for the involvement of an enzyme distinct from P4502D6. This was confirmed by kinetic analysis of the process in microsomes from both poor and extensive metabolisers. It is concluded that, in man, the initial step of paroxetine metabolism is performed by at least two enzymes, one of which is cytochrome P4502D6.  (+info)

The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. (75/382)

Inhibition of human cytochrome P4502D6 (CYP2D6)-catalysed metabolism can lead to clinically significant alterations in pharmacokinetics. Since there is evidence that the selective serotonin reuptake inhibitor (SSRI) class of antidepressant drugs might inhibit CYP2D6, the effects of five SSRIs on human liver microsomal CYP2D6 activity were compared with each other and with three tricyclic antidepressant drugs. On a molar basis, paroxetine was the most potent of the SSRIs at inhibiting the CYP2D6-catalysed oxidation of sparteine (Ki = 0.15 microM), although fluoxetine (0.60 microM) and sertaline (0.70 microM) had Ki values in the same range. Fluvoxamine (8.2 microM) and citalopram (5.1 microM) also inhibited CYP2D6 activity. The major circulating metabolites of paroxetine in man produced negligible inhibition. In contrast, norfluoxetine the active metabolite of fluoxetine, was a potent CYP2D6 inhibitor (0.43 microM). CYP2D6 activity was also diminished by the tricyclic antidepressant drugs clomipramine (2.2 microM), desipramine (2.3 microM) and amitriptyline (4.0 microM). These findings suggest that compounds with SSRI activity are likely to interact with human CYP2D6 in vivo with the potential of causing drug interactions.  (+info)

Role of essential sulfhydryl groups in drug interactions at the neuronal 5-HT transporter. Differences between amphetamines and 5-HT uptake inhibitors. (76/382)

The sulfhydryl-selective alkylating agent, N-ethylmaleimide (NEM), has been used as a tool to discern whether different binding domains exist on the neuronal serotonin (5-HT) transporter for 5-HT and 5-HT uptake inhibitors (Reith, M. E. A., Allen, D. L., Sershen, H., and Lajtha, A. (1984) J. Neurochem. 43, 249-255; Graham, D., Esnaud, H., Habert, E., and Langer, S. Z. (1989) Biochem. Pharmacol. 38, 3819-3826). However, relatively high concentrations of NEM and long incubation times have been required for inactivation of the transporter-binding site which raises the possibility that NEM is reacting with other nucleophilic groups (Smyth, D. G., Blumenfeld, O. O., and Konigsberg, W. (1964) Biochem. J. 91, 589-595). In the present work, the reactivity and essential nature of sulfhydryl groups associated with substrate/inhibitor binding to the neuronal 5-HT transporter was assessed. [3H]Paroxetine, a potent and selective 5-HT uptake inhibitor, was used to label the 5-HT transporter. The effects of a relatively wide range of sulfhydryl reagents on [3H]paroxetine binding in digitoninsolubilized preparations of rat brain neuronal membranes and the relative abilities of different classes of drugs to protect against NEM-induced inactivation of [3H]paroxetine binding were studied. It was observed that digitonin-solubilized preparations were more sensitive than membrane preparations to the inactivating effects of NEM. The pKa of the reactive group was estimated to be 6.17, in the range expected for a reactive sulfhydryl. Sulfhydryls essential to ligand binding reacted preferentially with hydrophobic compounds (p-hydroxymercuribenzoate = dithiobisnitrobenzoate > methyl methanethiosulfonate > N-phenylmaleimide > N-ethylmaleimide) and were unreactive toward hydrophilic reagents such as iodoacetate and iodoacetamide. 5-HT, 5-HT uptake inhibitors and cocaine protected the digitonin-solubilized transporter from NEM-induced inactivation while the amphetamine-related releasing agents p-chloroamphetamine and fenfluramine were ineffective. The observation that the binding of some, but not all, ligands requires reduced sulfhydryl groups, suggests that differential mechanisms and/or different binding domains do exist for agents which interact at the neuronal 5-HT transporter.  (+info)

Partial purification and characterization of the sodium-ion-coupled 5-hydroxytryptamine transporter of rat cerebral cortex. (77/382)

A procedure for the extensive purification of the Na(+)-coupled 5-hydroxytryptamine transporter of rat cerebral cortex has been developed. The 5-hydroxytryptamine transporter was solubilized with the non-ionic detergent digitonin, and the detergent extracts were subjected to sequential affinity chromatography on a citalopram-based agarose support and wheat-germ-agglutinin-Sepharose. 5-Hydroxytryptamine transporters in the affinity-purified preparation were identified by using the selective 5-hydroxytryptamine-uptake inhibitor [3H]paroxetine, and were shown to display a similar pharmacological profile to those present in particulate preparations. An overall transporter purification of around 2000-fold was achieved with a 9% recovery. SDS/PAGE of affinity-chromatographed material starting from detergent extracts incubated in the presence or absence of 1 mM-citalopram indicated that a polypeptide of M(r) 73,000 corresponded to the 5-hydroxytryptamine-transporter protein.  (+info)

Treating chronic tension-type headache not responding to amitriptyline hydrochloride with paroxetine hydrochloride: a pilot evaluation. (78/382)

CONTEXT: In some individuals, chronic tension-type headache fails to respond to tricyclic antidepressant medications that often serve as first-line therapy. OBJECTIVE: To evaluate the clinical efficacy of paroxetine hydrochloride for chronic tension-type headache not responding to amitriptyline hydrochloride. DESIGN AND SETTING: Open-label trial of paroxetine conducted at 2 outpatient sites in Ohio. PARTICIPANTS AND INTERVENTION: Thirty-one adults (mean age, 37 years; 20 women) with chronic tension-type headache (mean, 25 headache days per month) who had failed to respond (less than 30% improvement) to treatment with either amitriptyline (n = 13) or matched placebo (n = 18). All participants were treated with paroxetine (up to 40 mg per day) in a 9-month protocol. OUTCOME MEASURES: Monthly headache index calculated as the mean of pain ratings (0 to 10 scale) recorded by participants in a diary 4 times per day, number of days per month with at least moderate pain (pain rating of 5 or greater), and analgesic medication use. RESULTS: In patients who had not responded to amitriptyline, paroxetine failed to reduce chronic tension-type headaches or analgesic medication use. In patients who had not responded to placebo, paroxetine produced modest reductions in chronic tension-type headaches and analgesic use. CONCLUSIONS: We found no evidence that chronic tension-type headaches that failed to respond to tricyclic antidepressant therapy with amitriptyline improved when subsequently treated with paroxetine. More support was found for the efficacy of paroxetine in patients with chronic tension-type headaches who had failed to respond to placebo.  (+info)

Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. (79/382)

BACKGROUND: Animal studies have shown that stress is associated with damage to the hippocampus, inhibition of neurogenesis, and deficits in hippocampal-based memory dysfunction. Studies in patients with posttraumatic stress disorder (PTSD) found deficits in hippocampal-based declarative verbal memory and smaller hippocampal volume, as measured with magnetic resonance imaging (MRI). Recent preclinical evidence has shown that selective serotonin reuptake inhibitors promote neurogenesis and reverse the effects of stress on hippocampal atrophy. This study assessed the effects of long-term treatment with paroxetine on hippocampal volume and declarative memory performance in PTSD. METHODS: Declarative memory was assessed with the Wechsler Memory Scale-Revised and Selective Reminding Test before and after 9-12 months of treatment with paroxetine in PTSD. Hippocampal volume was measured with MRI. Of the 28 patients who started the protocol, 23 completed the full course of treatment and neuropsychological testing. Twenty patients were able to complete MRI imaging. RESULTS: Patients with PTSD showed a significant improvement in PTSD symptoms with treatment. Treatment resulted in significant improvements in verbal declarative memory and a 4.6% increase in mean hippocampal volume. CONCLUSIONS: These findings suggest that long-term treatment with paroxetine is associated with improvement of verbal declarative memory deficits and an increase in hippocampal volume in PTSD.  (+info)

Effects of acute treatment with paroxetine, citalopram and venlafaxine in vivo on noradrenaline and serotonin outflow: a microdialysis study in Swiss mice. (80/382)

1. This study investigated whether a single administration of a range of doses (1, 4 and 8 mg kg-1, i.p.) of paroxetine, citalopram or venlafaxine may simultaneously increase extracellular levels of 5-HT ([5-HT]ext) and noradrenaline ([NA]ext) by using in vivo microdialysis in the frontal cortex (FCx) of awake, freely moving Swiss mice. 2. In vivo, paroxetine induced similar increases in cortical [5-HT]ext at the three doses tested, and induced a statistically significant increase in cortical [NA]ext at 4 and 8 mg x kg-1. Citalopram increased neither [5-HT]ext nor [NA]ext at the lowest dose, but increased both neurotransmitter levels at 4 and 8 mg x kg-1. At these doses, citalopram induced greater increases in cortical [5-HT]ext than in [NA]ext. Venlafaxine increased [5-HT]ext and [NA]ext to about 400 and 140% of the respective basal values at 8 mg kg-1. 3. Citalopram and paroxetine have the highest potency to increase cortical [5-HT]ext and [NA]ext, respectively. In addition, the rank of order of efficacy of these antidepressant drugs to increase [5-HT]ext in vivo in the FCx of mice was as follows: venlafaxine>citalopram>paroxetine, while the efficacy to increase cortical [NA]ext in mice of paroxetine and citalopram is similar, and greater than that of venlafaxine. 4. In conclusion, extracellular levels of cortical [NA]ext increase with the highest doses of the very selective SSRI citalopram, as well as with the very potent SSRI paroxetine. Surprisingly, the SNRI venlafaxine increased cortical [5-HT]ext to a greater extent rather than [NA]ext in the range of doses studied in mice.  (+info)