Inactivation of Plasmodium falciparum by photodynamic excitation of heme-cycle intermediates derived from delta-aminolevulinic acid. (73/723)

Transfusion-transmitted malaria (TTM), especially that caused by Plasmodium falciparum, is of great concern in malaria-endemic areas. As a result of increased international travel, migration, and the spread of drug-resistant parasites, TTM is also a growing problem in industrialized nations. An effective and inexpensive means of inactivating malaria parasites in blood products would represent an important advance. In this report, we demonstrate that photoactivation of plasmodial heme-cycle intermediates, derived from supplemental delta -aminolevulinic acid (ALA), by exposure to simple white light in the presence of ALA, reduces P. falciparum in culture to levels that are undetectable by light microscopy or lactate dehydrogenase assay. Photodynamic excitation of presumed heme-cycle intermediates, which was revealed by fluorescence microscopy, did not appear to adversely affect the viability of erythrocytes. These data suggest that this pathogen-inactivation strategy, which uses inexpensive reagents and white light, may represent an appropriate means of inactivating malaria parasites in blood products in resource-poor settings.  (+info)

Citation patterns in tropical medicine journals. (74/723)

Selections of most important journals in the field of tropical medicine have previously been identified with the help of resources such as bibliographical and citation databases. This article uses ISI's Journal Citation Reports (JSR) for 2002 to analyse the citation characteristics of the Tropical Medicine category. According to these data, this small but diverse group of 12 journals bestows some 40% more citations than it receives. Its six typical core journals tend to cite one another heavily, but they also refer a lot to multidisciplinary science and general medicine journals, and to infectious diseases and parasitology journals. Looking at the sources from which JCR's tropical medicine journals derive their citations, it is clear that in this reverse direction, the specialty's literature is still more concentrated. Apart from the typical core, this JCR category also contains a number of journals with more idiosyncratic citing patterns, focused on specialties such as paediatrics, a single disease (leprosy) and a representative of Latin American and Francophone biomedical science each. Implications of concentrated citedness and language biases are discussed briefly. This paper features a selection of bibliometric parameters relating to the tropical medicine journals and lists of the 80 journals most citing and cited by them.  (+info)

Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas' disease. (75/723)

Trypanosoma cruzi isolates from 23 acute chagasic patients from localities of Western Venezuela (state of Barinas) where Chagas' disease is endemic were typed using ribosomal and mini-exon gene markers. Results showed that isolates of the two major phylogenetic lineages, T. cruzi I and T. cruzi II, were isolated from these patients. Six isolates (26%) were typed as T. cruzi II and 17 (74%) as belonging to T. cruzi lineage I. Analysis of random amplified polymorphic DNA (RAPD) patterns confirmed these two groups of isolates, but did not disclose significant genetic intra-lineage polymorphism. Patients infected by both T. cruzi I or T. cruzi II showed different clinical profiles presenting highly variable signs and symptoms of acute phase of Chagas' disease ranging from totally asymptomatic to severe heart failure. The predominance of T. cruzi I human isolates in Venezuela allied to the higher prevalence of severe symptoms of Chagas' disease (heart failure) in patients infected by this lineage do not corroborate an innocuousness of T. cruzi I infection to humans. To our knowledge, this is the first study describing predominance of T. cruzi lineage I in a large number of acute chagasic patients with distinct and well-characterized clinical profiles.  (+info)

Use of artificial neural networks to accurately identify Cryptosporidium oocyst and Giardia cyst images. (76/723)

Cryptosporidium parvum and Giardia lamblia are protozoa capable of causing gastrointestinal diseases. Currently, these organisms are identified using immunofluorescent antibody (IFA)-based microscopy, and identification requires trained individuals for final confirmation. Since artificial neural networks (ANN) can provide an automated means of identification, thereby reducing human errors related to misidentification, ANN were developed to identify Cryptosporidium oocyst and Giardia cyst images. Digitized images of C. parvum oocysts and G. lamblia cysts stained with various commercial IFA reagents were used as positive controls. The images were captured using a color digital camera at 400 x (total magnification), processed, and converted into a binary numerical array. A variety of "negative" images were also captured and processed. The ANN were developed using these images and a rigorous training and testing protocol. The Cryptosporidium oocyst ANN were trained with 1,586 images, while Giardia cyst ANN were trained with 2,431 images. After training, the best-performing ANN were selected based on an initial testing performance against 100 images (50 positive and 50 negative images). The networks were validated against previously "unseen" images of 500 Cryptosporidium oocysts (250 positive, 250 negative) and 282 Giardia cysts (232 positive, 50 negative). The selected ANNs correctly identified 91.8 and 99.6% of the Cryptosporidium oocyst and Giardia cyst images, respectively. These results indicate that ANN technology can be an alternate to having trained personnel for detecting these pathogens and can be a boon to underdeveloped regions of the world where there is a chronic shortage of adequately skilled individuals to detect these pathogens.  (+info)

Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. (77/723)

Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/mul or 25 ng of T4 gene 32 protein/mul to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  (+info)

Comparison of the quantitative formalin ethyl acetate concentration technique and agar plate culture for diagnosis of human strongyloidiasis. (78/723)

The quantitative formalin ethyl acetate concentration technique (QFEC) was compared to agar plate culture (APC) for the detection of Strongyloides stercoralis larvae. QFEC could substitute for APC only when the parasite load was higher than 50 larvae per g of stool. This study serves as a good reminder to those conducting stool exams about the sensitivity and specificity limitations of both techniques.  (+info)

Toxoplasma gondii regulates recruitment and migration of human dendritic cells via different soluble secreted factors. (79/723)

We investigated in vitro the properties of soluble factors produced by Toxoplasma gondii on the recruitment, maturation and migration of human dendritic cells (DC) derived from CD34+ progenitor cells. We used soluble factors including excreted secreted antigens (ESA) produced under various conditions by the virulent type I RH strain (ESA-RH) and the less virulent PRU type II strain (ESA-PRU). Soluble factors of both T. gondii strains appeared to possess a chemokine-like activity that attracted immature DC. This recruitment activity required the presence of functional CCR5 molecules on the cell membrane. Incubation of DC for 24 h with ESA triggered the migration of a large percentage of these cells towards the chemokine MIP-3beta; ESA-PRU was more efficient than ESA-RH. ESA produced in absence of exogenous protein and crude extract did not induce DC migration but retained recruitment activity. These data indicate that recruitment activity and migration-inducing activity are not governed by the same factors. Moreover, incubation of DC for 48 h with ESA did not modify the expression of costimulation or maturation markers (CD83, CD40, CD80, CD86 or HLA-DR), but induced a decrease in CCR6 expression associated with an increased expression of CCR7. Taken together, these results suggest that T. gondii controls recruitment and migration of immature DC by different soluble factors and may induce a dysfunction in the host-specific immune response.  (+info)

Mobility of protozoa through narrow channels. (80/723)

Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 microm s(-1) (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 microm s(-1). Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment.  (+info)