Bleaching of bacteriorhodopsin by continuous light. (1/193)

A new two step photobleaching process is observed under continuous illumination of bacteriorhodopsin. This photobleaching is considerable even at physiological temperatures and becomes large at 50-60 degrees C. The photobleaching also increases with increasing pH from 7 to 10. We suggest that the bleaching at its final stage could be due to the dissociation of the retinal and a local thermal denaturation-like process. These facts may question the generally held belief that BR is a stable protein in vivo for a long period of time. Our results may have relevance also to practical applications of bacteriorhodopsin where the stability of bacteriorhodopsin is a key issue. In certain instances, the use of bacteriorhodopsin may require cooled conditions. Here, we defined the conditions under which bacteriorhodopsin is stable. The permanent photobleaching offers a new way of picture imaging and information input for bacteriorhodopsin-based optical devices.  (+info)

State influences on ventral medullary surface and physiological responses to sodium cyanide challenges. (2/193)

Intravenous sodium cyanide (NaCN) administration lowers ventral medullary surface (VMS) activity in anesthetized cats. Sleep states modify spontaneous and blood pressure-evoked VMS activity and may alter VMS responses to chemoreceptor input. We studied VMS activation during peripheral chemoreceptor stimulation by intravenous NaCN using optical procedures in six cats instrumented for recording sleep physiology during sham saline and control site trials. Images of scattered 660-nm light were collected at 50 frames/s with an optical device after 80-100 microg total bolus intravenous NaCN delivery during waking and sleep states. Cyanide elicited an initial ventilatory decline, followed by large inspiratory efforts and an increase in respiratory rate, except in rapid eye movement sleep, in which an initial breathing increase occurred. NaCN evoked a pronounced decrease in VMS activity in all states; control sites and sham injections showed little effect. The activity decline was faster in rapid eye movement sleep, and the activity nadir occurred later in waking. Sleep states alter the time course but not the extent of decline in VMS activity.  (+info)

Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. (3/193)

Manipulating optical properties of single-walled nanotubes (SWNTs) is necessary for the development of nanoscale optical devices and probes for biomedical research. In life sciences it will make possible the direct observation of SWNTs inside living cells using optical microscopes. In the nanotechnology field it will enable the development of nanosensors with fluorescent reporting. However, the direct fluorescent labeling of SWNTs is obstructed by their strong light quenching qualities. Besides, chemical functionalization of SWNTs needed for the covalent attachment of fluorescent dyes could change favorable properties of nanotubes. Here we report that optical properties of SWNTs can be manipulated without their covalent modification by wrapping them with fluorescently labeled polymer poly(vinylpyrrolidone) (PVP-1300). Fluorescent PVP-1300 forms a monomolecular approximately 2.5 nm thick layer coiling around individual SWNTs and nanotube bundles. PVP casing is fluorescent although it is only several nanometers thick. This makes individual SWNTs observable by a fluorescent microscope. The spare polymer strands left over after wrapping around the relatively shorter nanotubes form junctions between SWNTs tying them together into new configurations, primarily Y- and psi-type junctions. The ability to use a single fluorescent polymer strand to fasten nanotubes together can be useful in assembly of nanotube-made devices. In PVP-covered SWNTs multiple fluorophores are attached to each single nanotube making them unique composite fluorophores attractive as parts of biological fluorescent probes and in the development of the new materials in photonics and nanotechnology.  (+info)

A geological history of reflecting optics. (4/193)

Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.  (+info)

Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging. (5/193)

 (+info)

A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex. (6/193)

 (+info)

Improving solid to hollow core transmission for integrated ARROW waveguides. (7/193)

Optical sensing platforms based on anti-resonant reflecting optical waveguides (ARROWs) with hollow cores have been used for bioanalysis and atomic spectroscopy. These integrated platforms require that hollow waveguides interface with standard solid waveguides on the substrate to couple light into and out of test media. Previous designs required light at these interfaces to pass through the anti-resonant layers.We present a new ARROW design which coats the top and sides of the hollow core with only SiO2, allowing for high interface transmission between solid and hollow waveguides. The improvement in interface transmission with this design is demonstrated experimentally and increases from 35% to 79%. Given these parameters, higher optical throughputs are possible using single SiO2 coatings when hollow waveguides are shorter than 5.8 mm.  (+info)

Major components of the light microscope. (8/193)

 (+info)