Effect of Oenanthe javanica flavone on human and duck hepatitis B virus infection. (1/5)

AIM: To study the antiviral effect of Oenanthe javanica flavones (OjF) on human hepatoma HepG2.2.15 culture system and duck hepatitis B virus (DHBV) infection. METHODS: (1) After incubation for 24 h, the 2.2.15 cells were treated with different concentrations of OjF for 12 d. The cell alteration was observed by microscope. The presence of HBsAg and HBeAg were measured using the enzyme immunoassay kit after 2.2.15 cells were treated with OjF for 9 d. (2) Ducklings infected with DHBV intravenously were divided into 5 groups and treated with OjF, acyclovir (ACV), and normal saline respectively for 10 d. All the ducklings were bled before, during, and after treatments at different times, and serum levels of DHBV-DNA were detected by a dot-blot hybridization assay. RESULTS: (1) The 50% toxic concentration (TC50) of OjF was 2.28 g/L. The maximum nontoxic concentration (TC0) was 1.00 g/L. In nontoxic concentrations, OjF significantly inhibited HBsAg and HBeAg in 2.2.15 cells after 9 d of treatment (P<0.05, P<0.01). (2) The DHBV-DNA levels decreased significantly after the treatment with 0.50 and 1.00 g/kg of OjF (P<0.01). The inhibition of the peak of viremia was maximum at a dose of 1.00 g/kg and reached 54.3% on d 5 and 64.5% on d 10, respectively. CONCLUSION: The results demonstrate that OjF is a strong inhibitor of HBsAg and HBeAg secretion in 2.2.15 cells and DHBV-DNA levels in the HBV-infected duck model.  (+info)

Antioxidant and antigenotoxic activities of Angelica keiskei, Oenanthe javanica and Brassica oleracea in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells. (2/5)

Epidemiological studies indicate that consumption of green-yellow vegetables rich in chlorophyll, vitamin C, vitamin E, and carotenoids reduce the risk of cancer. We sought to examine the antigenotoxic and antioxidant properties of chlorophyll-rich methanol extracts of Angelica keiskei, Oenanthe javanica, and Brassica oleracea (kale). In the Salmonella mutagenicity assay, A. keiskei caused dose-dependent inhibition against three heterocyclic amine mutagens in the presence of S9, O. javanica was antimutagenic only at the highest concentration in the assay (2 mg/plate), and B. oleracea showed no consistent inhibitory activity at non-toxic levels. None of the extracts were effective against three direct-acting mutagens in the absence of S9. Extracts of A. keiskei and, to a lesser extent O. javanica, inhibited two of the major enzymes that play a role in the metabolic activation of heterocyclic amines, based on ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase assays in vitro. All three plant extracts were highly effective in assays which measured ferric reducing/antioxidant power, oxygen radical absorbance capacity, and Fe2+/H2O2-mediated DNA nicking. Finally, using the 'comet' assay, all three plant extracts protected against H2O2-induced genotoxic damage in human HCT116 colon cancer cells. These findings provide support for the antigenotoxic and antioxidant properties of chlorophyll-rich extracts of A. keiskei, O. javanica, and B. oleracea, through mechanisms that include inhibition of carcinogen activation and scavenging of reactive oxygen species.  (+info)

Polyacetylenes from sardinian Oenanthe fistulosa: a molecular clue to risus sardonicus. (3/5)

 (+info)

Oenanthe javanica extract accelerates ethanol metabolism in ethanol-treated animals. (4/5)

The effect of water dropwort (Oenanthe javanica DC) extract in eliminating ethanol was evaluated in New Zealand white rabbit and ICR mice. When a hot-water extract of water dropwort extract and ethanol was injected into New Zealand white rabbit, the plasma ethanol level was rapidly reduced, similar to metadoxine treatment. Specifically, the n-butanol fraction of hot-water extract was the strongest in eliminating plasma alcohol in ICR mice. When ethanol was orally ingested, administration of the hot-water extract eliminated up to 44% of the plasma ethanol in mice while the n-butanol fraction eliminated around 70%. Alcohol removal behaved in a dose-dependent manner in response to 50-200 mg/kg of n-butanol fraction. These data show O. javanica extract is effective in overcoming alcohol intoxication by the accelerating ethanol metabolism.  (+info)

Block and allosteric modulation of GABAergic currents by oenanthotoxin in rat cultured hippocampal neurons. (5/5)

 (+info)