Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. (49/4423)

The CFTR chloride channel is regulated by phosphorylation by protein kinases, especially PKA, and by nucleotides interacting with the two nucleotide binding domains, NBD-A and NBD-B. Giant excised inside-out membrane patches from Xenopus oocytes expressing human epithelial cystic fibrosis transmembrane conductance regulator (CFTR) were tested for their chloride conductance in response to the application of PKA and nucleotides. Rapid changes in the concentration of ATP, its nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP), its photolabile derivative ATP-P3-[1-(2-nitrophenyl)ethyl]ester, or ADP led to changes in chloride conductance with characteristic time constants, which reflected interaction of CFTR with these nucleotides. The conductance changes of strongly phosphorylated channels were slower than those of partially phosphorylated CFTR. AMP-PNP decelerated relaxations of conductance increase and decay, whereas ATP-P3-[1-(2-nitrophenyl)ethyl]ester only decelerated the conductance increase upon ATP addition. ADP decelerated the conductance increase upon ATP addition and accelerated the conductance decay upon ATP withdrawal. The results present the first direct evidence that AMP-PNP binds to two sites on the CFTR. The effects of ADP also suggest two different binding sites because of the two different modes of inhibition observed: it competes with ATP for binding (to NBD-A) on the closed channel, but it also binds to channels opened by ATP, which might either reflect binding to NBD-A (i.e., product inhibition in the hydrolysis cycle) or allosteric binding to NBD-B, which accelerates the hydrolysis cycle at NBD-A.  (+info)

Separation of nucleotide oligomers by unitary anion-exchange. (50/4423)

This paper is the first report on the retention behavior of synthetic oligonucleotides and nucleotide oligomers on a continuous-bedmatrix, strong-anion-exchange column. The separation mechanism is predominantly an anion-exchange process, but hydrophobic interaction plays a role as well. The separation is based on the chain length of the oligonucleotide. Both the addition of organic mobile phase modifiers and changes in column temperature affect the retention of oligomers significantly. A volatile buffer system (e.g., triethylamine acetate) could be employed to purify oligonucleotides, and no desalting procedure would be required after the column separation step. The recoveries from the separation are 70% or higher. The maximum loading capacity of an analytical column (35 x 7-mm i.d.) was found to be more than 366 micrograms.  (+info)

Formation and persistence of nucleotide alterations in rats exposed whole-body to environmental cigarette smoke. (51/4423)

The assessment of pathological effects produced by environmental tobacco smoke in humans is controversial in epidemiological studies. On the other hand, animal models are poorly sensitive to smoke carcinogenicity. We designed an experimental study assessing the tissueselective formation and persistence of DNA adducts in smoke-exposed rats. Sprague-Dawley rats were exposed for 6 h per day, 5 days per week, to environmental smoke resulting from a mixture of sidestream and mainstream smoke generated from Kentucky 2R1 reference cigarettes. The total particulate matter was in the range of 73-93 mg/m(3). DNA adducts were measured by (32)P-post-labelling in rat organs (lung, heart, liver, bladder and testis), tissues (dissected tracheal epithelium) and cells [isolated bronchoalveolar lavage (BAL) cells]. A time-related increase of (32)P-post-labelled DNA modifications was detectable by autoradiography, in the form of massive diagonal radioactive zones and individual spots. Top levels were reached after 4-5 weeks of exposure. The ratio of smoke-induced DNA adducts to the background levels detected in sham-exposed rats was 11.2 in the tracheal epithelium, 10.4 in BAL cells, 7.3 in the heart, 6.3 in the lung, 5.1 in the bladder, 1.9 in the testis and 1. 1 in the liver. Appearance of DNA adducts in the lung was also revealed by synchronous fluorescence spectrophotometry. Smoke-related oxidative damage was demonstrated by a significant enhancement of 8-hydroxy-2'-deoxyguanosine in lung DNA. In parallel, there was a time-related induction of lung microsomal arylhydrocarbon hydroxylase activity, an elevation in cytosolic glutathione S-transferase activity, and a moderate but progressive and significant depletion of reduced glutathione. After discontinuing exposure to environmental cigarette smoke for 1 week, DNA adduct levels significantly dropped in the lung, tracheal epithelium, heart and bladder. The decrease was evident but not statistically significant in BAL cells, and was negligible in the heart. The selective localization and the differential persistence of these promutagenic nucleotide modifications in rat organs, tissues and cells suggest that exposure to environmental cigarette smoke, at least under the high exposure regimens used in experimental studies, may pose a potential risk of developing mutation-related diseases.  (+info)

Metal-dependent nucleotide binding to the Escherichia coli rotamase SlyD. (52/4423)

Upon expression and purification of the first catalytic domain of mammalian adenylate cyclase type 1 (IC1), a 27 kDa contaminant was observed, which was labelled by three radioactive ATP analogues (8-azido-ATP, 3'-O-(4-benzoyl)benzoyl-ATP and 2',3'-dialdehyde-ATP); the protein was purified separately and identified as Escherichia coli SlyD by N-terminal amino acid sequence determination. SlyD is the host protein required for lysis of E. coli upon infection with bacteriophage PhiX174 and has recently been shown to display rotamase (peptidylproline cis-trans-isomerase) activity. The covalent incorporation of ATP analogues into SlyD was promoted by bivalent transition metal ions (Zn(2+)>/=Ni(2+)>Co(2+)>Cu(2+)) but not by Mg(2+) or Ca(2+); this is consistent with the known metal ion specificity of SlyD. ATP, ADP, GTP and UTP suppressed labelling of SlyD with comparable potencies. Similarly, SlyD bound 2',3'-O-(-2,4, 6-trinitrophenyl)-ATP with an affinity in the range of 10 microM, as determined by fluorescence enhancement. This interaction was further augmented in the presence of Zn(2+) (K(d)= approximately 2 microM at saturating Zn(2+)) but not of Mg(2+). Irrespective of the assay conditions, hydrolysis of nucleotides by SlyD was not detected. Upon gel filtration on a Superose HR12 column, SlyD (predicted molecular mass=21 kDa) migrated with an apparent molecular mass of 44 kDa, indicating that the protein was a dimer. However, the migration of SlyD was not affected by the presence of Zn(2+) or of Zn(2+) and ATP. Thus we concluded that SlyD binds nucleotides in the presence of metal ions. These findings suggest that SlyD serves a physiological role that goes beyond that accounted for by its intrinsic rotamase activity, which is observed in the absence of metal ions.  (+info)

Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? (53/4423)

The immunosuppressive and anti-inflammatory effects of low-dose methotrexate (MTX) have been related directly to inhibition of folate-dependent enzymes by polyglutamated derivatives, or indirectly to adenosine release and/or apoptosis and clonal deletion of activated peripheral blood lymphocytes in S-phase. In this study of phytohaemagglutinin-stimulated primary human T-lymphocytes we show that MTX (20 nM to 20 microM) was cytostatic not cytotoxic, halting proliferation at G(1). This stasis of blastogenesis was associated with an inhibition of purine ribonucleotide synthesis but a stimulation of pyrimidine biosynthesis, the normal mitogen-induced expansion of ATP and GTP pools over 72 h being restricted to concentrations of unstimulated T-cells, whereas the increment in UTP pools exceeded that of controls. Decreased incorporation of H(14)CO(3) or [(14)C]glycine into purine ribonucleotides, with no radiolabel accumulation in any de novo synthetic intermediate but enhanced H(14)CO(3) incorporation into UTP, supported these MTX-related effects. Exaggerated [(14)C]hypoxanthine salvage (which normalized the purine and UTP pools) confirmed the increased availability of 5-phosphoribosyl-1-pyrophosphate (PP-ribose-P) as the molecular mechanism underlying these disparate changes. These results provide the first substantive evidence that the immunosuppressive effects of low-dose MTX in primary blasting human T-lymphocytes relate not to the inhibition of the two folate-dependent enzymes of purine biosynthesis but to inhibition of the first enzyme, amidophosphoribosyltransferase, thereby elevating PP-ribose-P and stimulating UTP synthesis. Varying cell types or incubation conditions employed by other workers, especially malignant/activated cells with high basal metabolic rates, might mask the effects noted in primary human T-lymphocytes. The findings imply the involvement of low-dose MTX in the inhibition of T-lymphocyte proliferation and proliferation-dependent processes in rheumatoid arthritis.  (+info)

The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. (54/4423)

The Cdc6 protein of budding yeast and its homologues in other species play an essential role in the initiation of DNA replication. A cDNA encoding a human homologue of Cdc6 (HsCdc6) has been cloned and expressed as a fusion protein in a soluble and functionally active form. The purified protein bound specifically to ATP and slowly hydrolyzed it, whereas HsCdc6 mutants containing amino acid substitutions in the Walker A or B motifs were defective. The mutant proteins retained the ability to bind HsOrc1 and HsCdc6 but displayed aberrant conformations in the presence of nucleotides. Microinjection of either mutant protein into human cells in G1 inhibited DNA replication, suggesting that ATP binding and hydrolysis by HsCdc6 are essential for DNA replication.  (+info)

Characterization of sheep brain ryanodine receptor ATP binding site by photoaffinity labeling. (55/4423)

Two high Mr protein bands (440 and 420 kDa) in sheep brain microsomal membranes were labeled with the photoaffinity ATP analog, O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz2ATP). The 420 kDa band is labeled by [alpha-32P]-Bz2ATP with about 1000-fold higher affinity than the 440 kDa band. The heavily labeled 420 kDa band is identified as dynein heavy chain based on its partial amino acid sequence, and cross-reactivity with anti-dynein antibodies. The 440 kDa protein is immunologically identified as the type-2 RyR. Bz2ATP binding is obtained in the absence of divalent cations. Bz2ATP and ATP increased the binding of ryanodine to its receptor up to 3-fold, and increased the binding affinity up to 6-fold. Other nucleotides stimulate ryanodine binding with decreasing effectiveness: Bz2ATP > ATP > ADP > AMP > AMP-PNP > GTP > cAMP. With respect to nucleotide specificity, this binding site is similar to the skeletal muscle RyR (type 1). However, the brain RyR may have additional one or more sites with lower affinity with inhibitory effect on ryanodine binding. These results suggest that the major RyR isoform in sheep brain corresponds to the type-2 isoform, and that modulation of ryanodine binding by ATP involves its binding to the RyR protein. The association of dynein with brain microsomal membranes may reflect a linkage of RyR to the cytoskeleton.  (+info)

A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. (56/4423)

Mutations in HIV-1 reverse transcriptase (RT) give rise to 3'-azido-3'-deoxythymidine (AZT) resistance by a mechanism that has not been previously reproduced in vitro. We show that mutant RT has increased ability to remove AZTMP from blocked primers through a nucleotide-dependent reaction, producing dinucleoside polyphosphate and extendible primer. In the presence of physiological concentrations of ATP, mutant RT extended 12% to 15% of primers past multiple AZTMP termination sites versus less than 0.5% for wild type. Although mutant RT also unblocked ddAMP-terminated primers more efficiently than wild-type RT, the removal of ddAMP was effectively inhibited by the next complementary dNTP (IC50 approximately equal to 12 microM). In contrast, the removal of AZTMP was not inhibited by dNTPs except at nonphysiological concentrations (IC50 > 200 microM).  (+info)