Rapid and sensitive detection of immunoglobulin M (IgM) and IgG antibodies against canine distemper virus by a new recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. (1/582)

Canine distemper morbillivirus (CDV) infection causes a frequently fatal systemic disease in a broad range of carnivore species, including domestic dogs. In CDV infection, classical serology provides data of diagnostic and prognostic values (kinetics of seroconversion) and is also used to predict the optimal vaccination age of pups. Routine CDV serology is still based on time- and cost-intensive virus neutralization assays (V-NA). Here, we describe a new capture-sandwich enzyme-linked immunosorbent assay (ELISA) that uses recombinant baculovirus-expressed nucleocapsid (N) protein of a recent CDV wild-type isolate (2544/Han95) for the detection of CDV-specific antibodies in canine sera. Recombinant antigen was produced with high efficacy in Heliothis virescens larvae. The capture-sandwich ELISA enabled a clear-cut qualitative evaluation of the CDV-specific immunoglobulin G (IgG) and IgM serostatuses of 196 and 35 dog sera, respectively. Inter-rater agreement analysis (kappa = 0.988) indicated that the ELISA can be used unrestrictedly as a substitute for the V-NA for the qualitative determination of CDV-specific IgG serostatus. In an attempt to semiquantify N-specific antibodies, a one-step-dilution (alpha method) IgG-specific ELISA was implemented. Alpha values of >/=50% showed very good inter-rater agreement (kappa = 0.968) with V-NA titers of >/=1/100 50% neutralizing dose (ND50) as measured against the central European CDV wild-type isolate 2544/Han95 in canine sera originating from northern Germany. An ND50 titer of 1/100 is considered a threshold, and titers of >/=1/100 indicate a resilient, protective immunity. CDV N-specific antibodies of the IgM class were detected by the newly developed ELISA in 9 of 15 sera obtained from dogs with symptoms of acute distemper. In leucocytes of 5 of the 15 dogs (all of which were also IgM positive) CDV RNA was detected by reverse transcription (RT)-PCR. The recombinant capture-sandwich ELISA detecting N-specific antibodies of the IgG class provided superior sensitivity and specificity and thus represents a rapid and cost-effective alternative to classical CDV V-NA. By detection of specific IgM antibodies, the ELISA will be complementary to RT-PCR and V-NA in the diagnosis of acute distemper infections.  (+info)

Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-coordinating sequences. (2/582)

The retroviral nucleocapsid (NC) protein contains highly conserved amino acid sequences (-Cys-X2-Cys-X4-His-X4-Cys-) designated retroviral (CCHC) Zn2+ fingers. The NC protein of murine leukemia viruses contains one NC Zn2+ finger and mutants that were competent in metal binding (CCCC and CCHH) packaged wild-type levels of full-length viral RNA but were not infectious. These studies were extended to human immunodeficiency virus type 1 (HIV-1), a virus with two NC Zn2+ fingers. Viruses with combinations of CCHC, CCCC, and CCHH Zn2+ fingers in each position of HIV-1 NC were characterized. Mutant particles contained the normal complement of processed viral proteins. Four mutants packaged roughly wild-type levels of genomic RNA, whereas the remaining mutants packaged reduced levels. Virions with mutated C-terminal position NC fingers were replication competent. One interesting mutant, containing a CCCC Zn2+ finger in the N-terminal position of NC, packaged wild-type levels of viral RNA and showed approximately 5% wild-type levels of infectivity when examined in CD4-expressing HeLa cells containing an HIV-1 LTR/beta-galactosidase construct. However, this particular mutant was replication defective in H9 cells; all other mutants were replication defective over the 8-week course of the assay. Two long terminal repeat viral DNA species could be detected in the CCCC mutant but not in any of the other replication-defective mutants. These studies show that the N-terminal Zn2+ finger position is more sensitive to alterations than the C-terminal position with respect to replication. Additionally, the retroviral (CCHC) NC Zn2+ finger is required for early infection processes. The evolutionary pressure to maintain CCHC NC Zn2+ fingers depends mainly on its function in infection processes, in addition to its function in genome packaging.  (+info)

The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. (3/582)

Using a set of parental and recombinant murine hepatitis virus strains, we demonstrate that the nucleocapsid protein induces transcription of the novel fgl2 prothrombinase gene and elevated procoagulant activity in those strains that produce fulminant hepatitis. Chinese hamster ovary cells cotransfected with a construct expressing nucleocapsid protein from susceptible strains and with a luciferase reporter construct containing the fgl2 promoter showed a 6-fold increase in luciferase activity compared with nontransfected cells or cells cotransfected with a construct expressing nucleocapsid protein from resistant strains. Two deletions found at coding sites 111-123 and 1143-1145 of structural domains I and III, respectively, of the nucleocapsid gene may account for the differences between pathogenic and nonpathogenic strains. Preliminary mapping of the fgl2 promoter has defined a region from -372 to -306 upstream from the ATG translation initiation site to be responsive to nucleocapsid protein. Hence, mapping of genetic determinants in parental and recombinant strains demonstrates that the nucleocapsid protein of strains that induce fulminant hepatitis is responsible for transcription of the fgl2 prothrombinase gene. These studies provide new insights into the role of the nucleocapsid gene in the pathogenesis of viral hepatitis.  (+info)

Recognition of an MHC class I-restricted antigenic peptide can be modulated by para-substitution of its buried tyrosine residues in a TCR-specific manner. (4/582)

Conformational dependence of TCR contact residues of the H-2Kb molecule on the two buried tyrosine side chains of the vesicular stomatitis virus (VSV)-8 peptide was investigated by systematic substitutions of the tyrosines with phenylalanine, p-fluorophenylalanine (pFF), or p-bromophenylalanine (pBrF). The results of peptide competition CTL assays revealed that all of the peptide variants, except for the pBrF analogues, had near-native binding to the H-2Kb molecule. Epitope-mapped anti-H-2Kb mAbs detected conformational differences among H-2Kb molecules stabilized with these VSV-8 variants on RMA-S cells. Selective recognition of the VSV-8 analogues was displayed by a panel of three H-2Kb-restricted, anti-VSV-8 TCRs. Thus, these substitutions result in an antigenically significant conformational change of the MHC molecular surface structure at both C and D pockets, and the effect of this change on cognate T cell recognition is dependent on the TCR structure. Our results confirm that the structure of buried peptide side chains can determine the surface conformation of the MHC molecule and demonstrate that even a very subtle structural nuance of the buried side chain can be incorporated into the surface conformation of the MHC molecule. The ability of buried residues to modulate this molecular surface augments the number of residues on the MHC-peptide complex that can be recognized as "foreign" by the CD8+ T cell repertoire and allows for a higher level of antigenic discrimination. This may be an important mechanism to expand the total number of TCR specificities that can respond to a single peptide determinant.  (+info)

Molecular requirements for human immunodeficiency virus type 1 plus-strand transfer: analysis in reconstituted and endogenous reverse transcription systems. (5/582)

We have developed a reconstituted system which models the events associated with human immunodeficiency virus type 1 (HIV-1) plus-strand transfer. These events include synthesis of plus-strand strong-stop DNA [(+) SSDNA] from a minus-strand DNA donor template covalently attached to human tRNA3Lys, tRNA primer removal, and annealing of (+) SSDNA to the minus-strand DNA acceptor template. Termination of (+) SSDNA synthesis at the methyl A (nucleotide 58) near the 3' end of tRNA3Lys reconstitutes the 18-nucleotide primer binding site (PBS). Analysis of (+) SSDNA synthesis in vitro and in HIV-1 endogenous reactions indicated another major termination site: the pseudouridine at nucleotide 55. In certain HIV-1 strains, complementarity between nucleotides 56 to 58 and the first three bases downstream of the PBS could allow all of the (+) SSDNA products to be productively transferred. Undermodification of the tRNA may be responsible for termination beyond the methyl A. In studies of tRNA removal, we find that initial cleavage of the 3' rA by RNase H is not sufficient to achieve successful strand transfer. The RNA-DNA hybrid formed by the penultimate 17 bases of tRNA still annealed to (+) SSDNA must also be destabilized. This can occur by removal of additional 3'-terminal bases by RNase H (added either in cis or trans). Alternatively, the nucleic acid chaperone activity of nucleocapsid protein (NC) can catalyze this destabilization. NC stimulates annealing of the complementary PBS sequences in (+) SSDNA and the acceptor DNA template. Reverse transcriptase also promotes annealing but to a lesser extent than NC.  (+info)

A new quantitative method for rabies virus by detection of nucleoprotein in virion using ELISA. (6/582)

We have developed a new quantitative method for rabies virus (RV) detection using enzyme-linked immunosorbent assay (ELISA). The method named N-ELISA was based on the quantitation of nucleoprotein (N) in RV virions captured by RV-specific polyclonal antibodies on an ELISA plate. Both infective and defective interfering (DI) particles of RV could be detected by this method. When viruses were propagated in a medium of pH 7.4 adjusted with 7% NaHCO3, N-ELISA could detect them with titers of more than 10(6) pfu/ml, though the result did not correlate highly with that of the infectivity assay. The reason for this was considered to be that RVs included spikeless and damaged particles which were produced under conditions of low or high pH. However, in the time course of virus yield, titers of N-ELISA correlated well with those of the infectivity assay.  (+info)

Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. (7/582)

The genome of the nucleopolyhedrovirus (NPV) (T3 strain) pathogenic for Bombyx mori (Bm) was sequenced and analysed. The BmNPV genome was 128,413 nucleotides long with a G+C content of 40% and contained 136 open reading frames (ORFs) encoding predicted proteins of over 60 amino acids. Although phenotypically different, the genome organizations of BmNPV and Autographa californica multinucleocapsid NPV (AcMNPV) were closely related. The BmNPV genome was over 90% identical to about three-quarters of the genome of AcMNPV. The relatedness of predicted amino acid sequences of corresponding ORFs between BmNPV and AcMNPV was about 90%. However, the BmNPV genome lacked homologues of the following AcMNPV ORFs: Ac3 (conotoxin), Ac7 (orf603), Ac48 (etm), Ac49 (pcna), Ac70 (hcf-1), Ac86 (pnk/pnl) and Ac134 (p94). In addition, BmNPV contained five ORFs related to Ac2. A high frequency of multiple 3 bp insertions was also found within BmNPV and AcMNPV coding sequences.  (+info)

Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V beta repertoire of the responding CD8+ cytotoxic lymphocyte population. (8/582)

Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex.  (+info)