Uncouplers and the molecular mechanism of uncoupling in mitochondria. (41/392)

Uncouplers are molecules with protonophoric and ionophoric capabilities that mediate coupled cyclical transport of cations--a transport that takes precedence over all other coupled processes. Uncouplers form cation-containing complexes with electrogenic ionophores that potentiate cyclical transport of cations. The molecular mechanism of uncoupling sheds strong light on the mechanism of coupling.  (+info)

Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes. (42/392)

Isolated rat hepatocytes were incubated with extracellular ATP to induce a prolonged increase in intracellular Ca2+ ([Ca2+]i) and a loss of viability within 2 h. By using video-intensified fluorescence microscopy, the effects of exposure to extracellular ATP on [Ca2+]i, mitochondrial membrane potential (MMP) and cell viability were determined simultaneously in individual living hepatocytes. The increase in [Ca2+]i on exposure to ATP was followed by a decreasing MMP; there were big differences between individual cells. Complete loss of the MMP occurred before cell death was observed. Omission of K+ from the incubation medium decreased the cytotoxicity of ATP; under these conditions, intracellular K+ was decreased by more than 80%. Treatment with nigericin also depleted intracellular K+ and decreased ATP-induced toxicity. Protection against loss of viability by means of a decrease in intracellular [K+] was reflected by maintenance of the MMP. These observations suggest that ATP-induced cell death may be caused by a mechanism that has been described for isolated mitochondria: after an increase in Ca2+ levels, a K+ influx into mitochondria is induced, which finally disrupts the MMP and leads to cell death.  (+info)

Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. (43/392)

The uptake by light-grown cells of Rhodobacter capsulatus of the highly toxic metalloid oxyanion tellurite (TeO(3)(2-)) was examined. We show that tellurite is rapidly taken up by illuminated cells in a process which is inhibited by the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) and by the K(+)/H(+) exchanger nigericin. Notably, the light-driven membrane potential (Delta psi) is enhanced by K(2)TeO(3)> or =200 microM. Further, tellurite uptake is largely insensitive to valinomycin, strongly repressed by the sulfhydryl reagent N-ethylethylmaleimide (NEM) and competitively inhibited by phosphate. We conclude that tellurite is transported into cells by a Delta pH-dependent, non-electrogenic process which is likely to involve the phosphate transporter (PiT family).  (+info)

A potassium ionophore (Nigericin) inhibits stimulation of human lymphocytes by mitogens. (44/392)

Nigericin, an ionophore that exchanges K+ for H+ across most biologic membranes, reversibly inhibited the proliferative response of human lymphocytes to phytohemagglutinin (PHA). Inhibition occurred at nigericin concentrations of 10(-8) M or greater, and only during the early event of mitogenesis. There was no effect if nigericin was added 24 h or later after the initiation of PHA-stimulated cultures. The effect was not the result of toxicity or impaired mitochondrial respiration. At similar concentrations, nigericin also inhibited lymphocyte responses in mixed lymphocyte cultures and to other mitogens including concanavalin A, pokeweed mitogen, and the calcium ionophore A23187. The findings support the view that one or more transmembranous events, mediated by changes in cation flux and/or membrane potential, are critical in the initial stages of lymphocyte mitogenesis.  (+info)

Regulation of connexin43 protein complexes by intracellular acidification. (45/392)

Ischemia-induced acidification of astrocytes or cardiac myocytes reduces intercellular communication by closing gap junction channels and subsequently internalizing gap junction proteins. To determine whether such coupling changes might be attributable to altered interactions between connexin43 (Cx43) and other proteins, we applied the nigericin/high K+ method to vary intracellular pH (pHi) in cultured cortical astrocytes. Intracellular acidification was accompanied by internalization of Cx43 with retention of Cx43 scaffolding protein Zonula Occludens-1 (ZO-1) at cell surfaces, suggesting that ZO-1 and Cx43 dissociate at low pHi. Coimmunoprecipitation studies revealed decreased binding of ZO-1 and increased binding of c-Src to Cx43 at low pHi. Resonant mirror spectroscopy was used to quantify binding of the SH3 domain of c-Src and the PDZ domains of ZO-1 to the carboxyl terminal domain of Cx43 (Cx43CT). Data indicate that the c-Src/Cx43CT interaction is highly pH dependent whereas the ZO-1/Cx43CT interaction is not. Moreover, binding of c-Src to Cx43CT prevented and reversed ZO-1/Cx43CT binding. We hypothesize that increased affinity of c-Src for Cx43 at low pHi aids in separation of Cx43 from ZO-1 and that this may facilitate internalization of Cx43. These data suggest that protracted acidification may remodel protein-protein interactions involving Cx43 and thus provide an important protective mechanism to limit lesion spread after ischemic injury.  (+info)

Possible mechanism of polycation liposome (PCL)-mediated gene transfer. (46/392)

A novel gene transfer system utilizing polycation liposomes (PCLs), obtained by modifying liposomes with cetyl polyethylenimine (PEI), was previously developed (Gene Ther. 7 (2002) 1148). PCLs show notable transfection efficiency with low cytotoxicity. However, the mechanism of PCL-mediated gene transfer is still unclear. In this study, we examined the intracellular trafficking of PCL-DNA complexes by using HT1080 cells, fluorescent probe-labeled materials, and confocal laser scan microscopy. We found that the PCL-DNA complexes were taken up into cells by the endosomal pathway, since both cellular uptake of the complex and gene expression were blocked by wortmannin, an inhibitor of this pathway. We also observed that the plasmid DNA and cetyl PEI complex became detached from the PCL lipids and was preferentially transferred into the nucleus in the form of the complex, whereas the PCL lipids remained in the cytoplasmic area, possibly in the endosomes. In fact, nigericin, which dissipates the pH gradient across the endosomal membrane, inhibited the detachment of lipids from the PCL-DNA complex and subsequent gene expression. Taken together, our data indicate the following mechanism for gene transfer by PCLs: PCLs effectively transfer DNA to endosomes and release cetyl PEI-DNA complexes into the cytosol. Furthermore, cetyl PEI also contributes to gene entry into the nucleus.  (+info)

Effects of agents which inhibit the regulation of intracellular pH on murine solid tumours. (47/392)

Cell killing can be achieved in an acidic environment in tissue culture (medium pH less than 7.0) by agents (nigericin, carbonylcyanide-3-chlorophenylhydrazone (CCCP)) which transport protons from the extracellular space into the cytoplasm. Cell killing is enhanced when these agents are used in combination with compounds (amiloride, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)) which inhibit the membrane-based exchangers responsible for the regulation of intracellular pH (pHi). We describe experiments which assess the ability of these agents to kill tumour cells in spheroids and in vivo. Both nigericin and CCCP were observed to penetrate tissue based on their ability to kill tumour cells in spheroids. The mean extracellular pH (pHe) of the KHT fibrosarcoma and the EMT-6 sarcoma were observed to be 0.21 and 0.32 pH units more acidic than the mean pHe in muscle tissue. Intraperitoneal (i.p.) administration of the vasodilator hydralazine (10 mg kg-1) caused a reduction of the mean pHe of the KHT but not the EMT-6 tumour. Nigericin (2.5 mg kg-1, i.p.) plus amiloride (10 mg kg-1, i.p.) followed 30 min later by hydralazine (10 mg kg-1, i.p.) reduced the surviving fraction of cells in the KHT and EMT-6 tumours, but had minimal effects on growth delay. When KHT tumours were treated with 15 Gy X-rays followed immediately by nigericin plus amiloride and hydralazine a reduced surviving fraction as well as an increase in tumour growth delay was observed compared to radiation alone. The administration of nigericin (2.5 mg kg-1, i.p.) or the combination of nigericin (2.5 mg kg-1, i.p.) followed by hydralazine (10 mg kg-1, intravenous (i.v.)) resulted in reductions of tumour pHi of 0.27 and 0.29 pH units respectively as determined by 31P magnetic resonance spectroscopy (MRS). Our results show that the combination of nigericin and hydralazine (with or without amiloride) can kill cells in rodent solid tumours and that cell killing is associated with a reduction in the mean pHi of tumour cells.  (+info)

Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. (48/392)

The mechanisms underlying caspase-1 activation and IL-1beta processing during inflammatory activation of monocytes and macrophages are not well defined. Here, we describe an in vitro proteolytic processing assay that allows for comparison of caspase-1 regulatory components in a cell-free system separately from the confounding issue of IL-1beta secretion. Analysis of in vitro IL-1beta and caspase-1 processing in lysates from unstimulated Bac1 murine macrophages indicated a slow rate of basal caspase-1 activation and proteolytic maturation of IL-1beta. In contrast, brief (5 min) treatment of intact macrophages with extracellular ATP (as an activator of the P2X(7) receptor) or nigericin before cell lysis markedly accelerated the in vitro processing of caspase-1 and IL-1beta. This acceleration of in vitro processing was strictly dependent on loss of intracellular K(+) from the intact cells. The induction of in vitro caspase-1 activation by lysis per se or by K(+) loss before lysis was sensitive to pretreatment of intact macrophages with the tyrphostin AG-126 or bromoenol lactone, an inhibitor of Ca(2+)-independent phospholipase A(2). Caspase-1 activation and IL-1beta processing in lysates from unstimulated macrophages were also accelerated by addition of recombinant ASC, a previously identified adapter protein that directly associates with caspase-1. These data indicate that increased K(+) efflux via P2X(7) nucleotide receptor stimulation activates AG-126- and bromoenol lactone-sensitive signaling pathways in murine macrophages that result in stably maintained signals for caspase-1 regulation in cell-free assays.  (+info)