Sequence, genomic structure and tissue expression of carp (Cyprinus carpio L.) vertebrate ancient (VA) opsin. (25/433)

We report the isolation and characterisation of a novel opsin cDNA from the retina and pineal of the common carp (Cyprinus carpio L.). When a comparison of the amino acid sequences of salmon vertebrate ancient opsin (sVA) and the novel carp opsin are made, and the carboxyl terminus is omitted, the level of identity between these two opsins is 81% and represents the second example of the VA opsin family. We have therefore termed this C. carpio opsin as carp VA opsin (cVA opsin). We show that members of the VA opsin family may exist in two variants or isoforms based upon the length of the carboxyl terminus and propose that the mechanism of production of the short VA opsin isoform is alternative splicing of intron 4 of the VA opsin gene. The VA opsin gene consists of five exons, with intron 2 significantly shifted in a 3' direction relative to the corresponding intron in rod and cone opsins. The position (or lack) of intron 2 appears to be a diagnostic feature which separates the image forming rod and cone opsin families from the more recently discovered non-visual opsin families (pin-opsins (P), vertebrate ancient (VA), parapinopsin (PP)). Finally, we suggest that lamprey P opsin should be reassigned to the VA opsin family based upon its level of amino acid identity, genomic structure with respect to the position of intron 2 and nucleotide phylogeny.  (+info)

Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca(2+)-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Onchorhynchus mykiss) and human erythrocytes. (26/433)

Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  (+info)

Multiple transcripts encoding lamprey gonadotropin-releasing hormone-I precursors. (27/433)

The cDNA encoding lamprey prepro-gonadotropin releasing hormone-I (lamprey GnRH-I) has been isolated and sequenced in an agnathan, the sea lamprey, Petromyzon marinus. The lamprey GnRH-I precursor is the first identified in an ancient lineage of vertebrates and has the same overall tripartite structure as other vertebrate GnRH precursors. The amino acid sequence of lamprey GnRH-I and the processing site (Gly-Lys-Arg) are highly conserved during 500 million years of evolution with 60-70% identity compared with those of tetrapod and teleost GnRH precursors. In contrast, the GnRH associated peptide regions are markedly divergent, with less than 20% identity compared with all identified vertebrate precursors. Unlike all other known vertebrate GnRH precursors, which typically have one and in a single case two transcripts, three distinct transcripts were isolated and sequenced in lampreys. These lamprey GnRH-I transcripts, termed GAP49, GAP50 and GAP58, differed in the length of the GAP coding sequence and were demonstrated to be the products of a single gene. Analysis of the lamprey GnRH-I gene intron-2 splice junction demonstrated that alternate splicing produces the different lamprey GnRH-I transcripts. Lamprey GnRH-I is the first GnRH gene demonstrated to utilize splice sequence variants to produce multiple transcripts, which may reflect an ancestral gene regulatory mechanism.  (+info)

Do lampreys have lymphocytes? The Spi evidence. (28/433)

It is generally accepted that living jawless vertebrates (lampreys and hagfishes) lack the capability of mounting an adaptive immune response. At the same time, however, there are reports describing histological evidence for the presence in agnathan tissues of lymphocytes, the key players in adaptive immunity. The question therefore arises whether the cells identified morphologically as lymphocytes are true lymphocytes in terms of their genetic developmental program. In this study, evidence is provided that the lampreys express a member of the purine box 1 (PU.1)/spleen focus-forming virus integration B (Spi-B) gene family known to be critically and specifically involved in the differentiation of lymphocytes in jawed vertebrates. The lamprey gene is expressed in the lymphocyte-like cells of the digestive tract and inexplicably also in the ovary.  (+info)

Members of the Ikaros gene family are present in early representative vertebrates. (29/433)

Members of the Ikaros multigene family of zinc finger proteins are expressed in a tissue-specific manner and most are critical determinants in the development of both the B and T lymphocytes as well as NK and dendritic APC lineages. A PCR amplification strategy that is based on regions of shared sequence identity in Ikaros multigene family members found in mammals and several other vertebrates has led to the recovery of cDNAs that represent the orthologues of Ikaros, Aiolos, Helios, and Eos in Raja eglanteria (clearnose skate), a cartilaginous fish that is representative of an early divergence event in the phylogenetic diversification of the vertebrates. The tissue-specific patterns of expression for at least two of the four Ikaros family members in skate resemble the patterns observed in mammals, i.e., in hematopoietic tissues. Prominent expression of Ikaros in skate also is found in the lymphoid Leydig organ and epigonal tissues, which are unique to cartilaginous fish. An Ikaros-related gene has been identified in Petromyzon marinus (sea lamprey), a jawless vertebrate species, in which neither Ig nor TCRs have been identified. In addition to establishing a high degree of evolutionary conservation of the Ikaros multigene family from cartilaginous fish through mammals, these studies define a possible link between factors that regulate the differentiation of immune-type cells in the jawed vertebrates and related factors of unknown function in jawless vertebrates.  (+info)

Pax1/Pax9-Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. (30/433)

Among the transcription factor gene families, Pax genes play important and unique roles in morphological patterning of animal body plans. Of these, Group I Pax genes (Pax1 and Pax9) are expressed in the endodermal pharyngeal pouches in many groups of deuterostomes, and vertebrates seem to have acquired more extensive expression domains in embryos. To understand the evolution of Pax1/Pax9-related genes in basal groups of vertebrates, their cognates were isolated from the Japanese marine lamprey, Lampetra japonica. RT-PCR of larval lamprey cDNA yielded two different fragments containing vertebrate Pax1- and Pax9-like paired domains. The Pax9 orthologue was isolated and named LjPax9. Whole-mount in situ hybridization revealed that this gene was expressed in endodermal pharyngeal pouches, mesenchyme of the velum (the oral pumping apparatus) and the hyoid arch, and the nasohypophysial plate, but not in the somitic mesoderm of the lamprey embryo. These expression patterns could be regarded as a link between the basal chordates and the gnathostomes and are consistent with the phylogenetic position of the lamprey. Especially, the appearance of neural crest seemed to be the basis of velar expression. Homology of the velum and the jaw is also discussed based on the LjPax9 expression in the first pharyngeal pouch and in the velar mesenchyme. We conclude that Pax9 genes have sequentially expanded into new expression domains through evolution as more complicated body plans emerged.  (+info)

Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. (31/433)

Experimental and computational techniques have been used to investigate the group I metabotropic glutamate receptor (mGluR)-mediated increase in the frequency of spinal cord network activity underlying locomotion in the lamprey. Group I mGluR activation potentiated the amplitude of NMDA-induced currents in identified motoneurons and crossed caudally projecting network interneurons. Group I mGluRs also potentiated NMDA-induced calcium responses. This effect was blocked by a group I mGluR-specific antagonist, but not by blockers of protein kinase A, C, or G. The effect of group I mGluRs activation was also tested on NMDA-induced oscillations known to occur during fictive locomotion. Activation of these receptors increased the duration of the plateau phase and decreased the duration of the hyperpolarizing phase. These effects were blocked by a group I mGluR antagonist. To determine its role in the modulation of NMDA-induced oscillations and the locomotor burst frequency, the potentiation of NMDA receptors by mGluRs was simulated using computational techniques. Simulating the interaction between these receptors reproduced the modulation of the plateau and hyperpolarized phases of NMDA-induced oscillations, and the increase in the frequency of the locomotor rhythm. Our results thus show a postsynaptic interaction between group I mGluRs and NMDA receptors in lamprey spinal cord neurons, which can account for the regulation of the locomotor network output by mGluRs.  (+info)

Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release. (32/433)

Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. Application of the specific Group I mGluRs antagonist 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) reduced the amplitude of consecutive high-frequency evoked excitatory postsynaptic currents (EPSCs). A series of experiments using techniques of electrophysiology and calcium imaging were carried out to determine the cellular mechanisms by which this phenomenon occurs. Concentration-dependent increases in the pre- and postsynaptic [Ca(2+)](i) were seen with the application of mGluR agonists. Similarly, high-frequency stimulation of axons caused a Group I mGluR-dependent enhancement in presynaptic Ca(2+) transients. Application of mGluR agonist caused a depolarization of the presynaptic elements, while thapsigargin decreased the high-frequency stimulus- and agonist-induced rises in [Ca(2+)](i). These data suggest that both membrane depolarization and the release of Ca(2+) from intracellular stores potentially play a role in mGluR-induced Ca(2+) signaling. To determine the effect of this modulation of Ca(2+) dynamics on spontaneous glutamate release, miniature EPSCs were recorded from postsynaptic reticulospinal neurons. A potent Group I mGluR agonist, (S)-homoquisqualic acid, caused a large increase in the frequency of events. These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.  (+info)