Role of Fas (CD95) in tubulointerstitial disease induced by unilateral ureteric obstruction. (9/503)

Murine renal tubular epithelial cells and interstitial fibroblasts may express both Fas (CD95) death receptor and Fas ligand and are vulnerable to Fas-mediated death in vitro. We therefore hypothesized that an absence of renal Fas may protect resident cells from undergoing apoptosis. We performed unilateral ureteric ligation [producing unilateral ureteral obstruction (UUO)] in 6-wk-old normal control mice and C57Bl6/lpr mice, which express a nonfunctional Fas receptor. Obstructed kidneys were removed at days 3, 7, and 14 (n = 6 per group). Tubular cell apoptosis at day 7 was significantly reduced in lpr mice [21.8 +/- 5.8 vs. 45.7 +/- 7.6 cells/10 high-power fields (hpf), P < 0.02]. Importantly, there was no difference in tubular cell proliferation between normal and lpr mice at any time point studied. Interestingly, double labeling with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and the proximal tubule-specific antibody Fx1A indicated that the absence of Fas reduced distal but not proximal tubular death at day 7. In addition, there was no difference in interstitial cell apoptosis or proliferation, suggesting that Fas does not play a significant role in interstitial cell death. Importantly, inflammatory macrophage infiltration and ultimate collagen I deposition was unchanged in lpr mice. In conclusion, the absence of functional cell surface Fas in UUO provides distal tubular cells with partial protection from apoptosis but does not affect interstitial cell fate in this model of tubulointerstitial injury.  (+info)

Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy. Implications for the pathogenesis of tubulointerstitial fibrosis. (10/503)

The finding that the systemic renin-angiotensin system (RAS) is not activated in most types of chronic renal disease has led to the suggestion that a local, intrarenal RAS may be an important determinant in the relentless progression of renal disease. Therefore, cell specific changes in various components of the RAS in response to renal mass reduction and angiotensin converting enzyme (ACE) inhibition were examined. Thirty Sprague-Dawley rats were randomly assigned to sham surgery, subtotal nephrectomy (STNx) alone or STNx treated with the ACE inhibitor, perindopril, and sacrificed after 12 weeks. In sham rats, renin mRNA and protein were only present in the juxtaglomerular apparatus. In contrast, in STNx kidneys, renin and angiotensin II expression were noted predominantly in renal tubular epithelial cells in association with overexpression of the prosclerotic cytokine, transforming growth factor-beta1 (TGF-beta1). In perindopril-treated STNx rats expression of renin and TGF-beta1 were similar to control animals. These finding indicate that following renal mass reduction there is pathological tubular expression of various components of the RAS. Furthermore, in contrast to the juxtaglomerular apparatus, tubular renin expression was reduced with ACE inhibition. These changes within the intrarenal RAS may be pathogenetically linked to the development of tubulointerstitial injury.  (+info)

Development of scarring and renal failure in a rat model of crescentic glomerulonephritis. (11/503)

BACKGROUND: The aim of this study was to develop and characterize a rat model of crescentic glomerulonephritis which progresses to glomerulosclerosis and renal failure. METHODS: Glomerulonephritis was induced in Wistar Kyoto rats by a single injection of rabbit anti-glomerular basement membrane antiserum. Albuminuria and serum creatinine were monitored. Kidneys were examined, from 2.5 h to 44 days, using light-microscopy and immunohistochemistry. To characterize the glomerular inflammatory infiltrate, glomeruli were digested to single cells and analysed by fluorescence-activated cell sorter (FACS) and by immunohistochemistry on cytospins. RESULTS: Rats developed albuminuria by 4 days and increased serum creatinine by day 18. Histology showed glomerular fibrinoid necrosis by day 4 and cellular crescents in a mean of 63% of glomeruli by day 11. By 6 weeks, rats had developed renal failure (mean creatinine >300 micromol/l) with 94% of the glomeruli showing glomerulosclerosis. The kidneys were also affected by severe interstitial nephritis and tubular loss. The glomeruli were infiltrated by monocytes/ macrophages (ED1+) and CD8+ (OX8+) cells. FACS analysis showed that CD8+ cells did not express T-cell markers (CD3, TCRalphabeta or TCRgammadelta) or the NK-cell marker (NKR-P1). FACS analysis of peripheral blood mononuclear cells demonstrated a population of monocytes reactive with OX8, and double-labelling of cytospin preparations of glomerular digests showed that a proportion of the CD8+ cells were a subset of ED1+ monocyte/macrophages. CONCLUSIONS: We have characterized a reproducible model of crescentic glomerulonephritis which rapidly progresses to chronic renal failure with glomerulosclerosis and tubulo-interstitial scarring. This model will be useful for testing new therapeutic approaches in crescentic glomerulonephritis.  (+info)

Tubulointerstitial nephritis antigen: an extracellular matrix protein that selectively regulates tubulogenesis vs. glomerulogenesis during mammalian renal development. (12/503)

Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix protein and is expressed in the renal tubular basement membranes. Its role in metanephric development was investigated. TIN-ag cDNA, isolated from the newborn mouse library, had an ORF of 1,425 nucleotides, a putative signal sequence, and an ATP/GTP-binding site. The translated sequence had approximately 80% identity with rabbit TIN-ag. Among various tissues, TIN-ag mRNA was primarily expressed in the newborn kidney. In the embryonic metanephros, TIN-ag expression was confined to the distal convolution or pole of the S-shaped body, the segment of the nascent nephron that is the progenitor of renal tubules. Treatment with TIN-ag antisense oligodeoxynucleotide induced dysmorphogenesis of the embryonic metanephroi, malformation of the S-shaped body, and a decrease in the tubular population, whereas the glomeruli were unaffected. Treatment also led to a decrease of TIN-Ag mRNA, de novo synthesis of TIN-ag protein, and its antibody reactivity. The mRNA expression of glomerular epithelial protein 1 (a marker for renal podocytes), anti-heparan-sulfate-proteoglycan antibody reactivity, and wheat germ agglutinin lectin staining of the metanephros were unaffected. The anti-TIN-ag antibody treatment also caused deformation of the S-shaped body and a reduction in the tubular population, whereas the glomeruli were unchanged. The data suggest that the TIN-ag, unlike other basement membrane proteins, selectively regulates tubulogenesis, whereas glomerulogenesis is largely unaffected.  (+info)

Factors produced by activated leukocytes alter renal epithelial cell differentiation. (13/503)

The development of tubulointerstitial fibrosis in inflammatory renal diseases has been linked to disease progression to end-stage renal failure. Understanding the interactions of the factors influencing inflammation and activating the fibrotic process, that is, the inflammatory infiltrate and the resident proximal tubular cells, may lead to a determination of the mechanisms that regulate tubulointerstitial fibrosis. We used an in vitro model of human proximal tubule cells that were stimulated with supernatant from activated peripheral blood mononuclear cells (leukocytes) to study the alterations in cellular phenotype, and examined the signaling pathways mediating epithelial-fibroblast like transdifferentiation. Our hypothesis of the proposed sequence of events leading to tubulointerstitial fibrosis is explained.  (+info)

Sarcoidosis with membranous nephropathy and granulomatous interstitial nephritis. (14/503)

A 49-year-old woman, who had been diagnosed as sarcoidosis based on bilateral hilar lymphadenopathy and lung biopsy, presented increased serum creatinine and calcium concentrations. Renal biopsy showed the presence of interstitial nephritis with non-caseating epithelioid granuloma and focal membranous transformation. Therapy with prednisolone was effective in normalizing serum creatinine, serum calcium, serum angiotensin converting enzyme, and urine beta2 microglobulin, but these abnormalities reappeared after rapid withdrawal of prednisolone. This is a rare case of sarcoidosis manifested by both membranous nephropathy and granulomatous interstitial nephritis, and indicates the necessity of long-term treatment of corticosteroid.  (+info)

Crry, a complement regulatory protein, modulates renal interstitial disease induced by proteinuria. (15/503)

Crry, a complement regulatory protein, modulates renal interstitial disease induced by proteinuria. BACKGROUND: Recent studies have suggested a role for urinary complement components in mediating tubulointerstitial damage, which is known to have a good correlation with progression of chronic renal diseases. Although accumulating evidence suggests that complement regulatory proteins play an important protective role in glomeruli, their role in renal tubules remains unclear. In order to establish the role of a complement regulatory protein, Crry, in renal tubular injury, we employed a molecular biological approach to block the expression of Crry in tubules of animals with proteinuria induced with puromycin aminonucleoside nephritis (PAN). Methods and Results. Two different antisense oligodeoxynucleotides (ODNs) against Crry were designed and applied to cultured rat mesangial cells in vitro in order to establish their efficacy. Antisense ODN treatment resulted in decreased expression of Crry protein associated with increased sensitivity to complement attack in cell lysis assays compared with control ODN treatment or no treatment (44.7, 1.50, and 1.34%, respectively). Antisense ODNs did not affect the expression of Thy1 as a control, confirming the specificity of our ODNs. In vivo, we performed selective right renal artery perfusion to administer antisense ODNs to the kidney and showed prominent uptake of ODNs by proximal tubular cells. Reduced expression of Crry protein was demonstrated in proximal tubular cells in antisense ODNs-treated kidneys. Normal rats treated with the antisense ODNs did not show any pathological changes. However, in PAN, rats with massive proteinuria showed increased deposition of C3 and C5b-9 in tubules in antisense-treated kidneys, and histological assessment revealed more severe tubulointerstitial injury in antisense-treated animals compared with controls. CONCLUSION: These results establish a pathogenic role for complement in leading to tubulointerstitial injury during proteinuria and, to our knowledge for the first time, show a protective role of a complement regulatory protein, Crry, in renal interstitial disease.  (+info)

Epstein-Barr virus infection of renal proximal tubule cells: possible role in chronic interstitial nephritis. (16/503)

Chronic interstitial nephritis frequently accompanies renal diseases of different etiologies. Far less common is the entity of primary interstitial nephritis wherein the glomerular and vascular structures of the kidney are not the primary focus of the disease process. Using in situ hybridization and the polymerase chain reaction, we detected DNA from the Epstein-Barr Virus (EBV) exclusively in renal tissue of patients with the idiopathic variety of chronic interstitial nephritis. The EBV genome, but not that of cytomegalovirus or adenovirus, was detected primarily in renal proximal tubule cells. Furthermore, the CD21 antigen, which serves as the receptor for EBV in B lymphocytes, was detected by immunocytochemistry primarily on proximal tubule cells and was markedly upregulated in the EBV-infected tissue. Western blot analysis of primary cultures of normal proximal tubule cells identified a 140-kDa protein, confirming the expression of the CD21 antigen. Colocalization experiments using proximal and distal tubule markers confirmed that EBV DNA and the CD21 antigen are found primarily in proximal tubule cells. EBV infection of renal proximal tubular cells may participate in evoking a cellular immune response that results in a damaged renal interstitium.  (+info)