Inhibition of L-type Ca2+ current by C-type natriuretic peptide in bullfrog atrial myocytes: an NPR-C-mediated effect. (17/116)

Single atrial myocytes were isolated from the bullfrog heart and studied under current and voltage clamp conditions to determine the electrophysiological effects of the C-type natriuretic peptide (CNP). CNP (10(-8) M) significantly shortened the action potential and reduced its peak amplitude after the application of isoproteronol (10(-7) M). In voltage clamp studies, CNP inhibited isoproteronol-stimulated L-type Ca2+ current (ICa) without any significant effect on the inward rectifier K+ current. The effects of cANF (10(-8) M), a selective agonist of the natriuretic peptide C receptor (NPR-C), were very similar to those of CNP. Moreover, HS-142-1, an antagonist of the guanylyl cyclase-linked NPR-A and NPR-B receptors did not alter the inhibitory effect of CNP on ICa. Inclusion of cAMP in the recording pipette to stimulate ICa at a point downstream from adenylyl cyclase increased ICa, but this effect was not inhibited by cANF. These results provide the first demonstration that CNP can inhibit ICa after binding to NPR-C, and suggest that this inhibition involves a decrease in adenylyl cyclase activity, which leads to reduced intracellular levels of cAMP.  (+info)

Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. (18/116)

Our previous studies have demonstrated that natriuretic peptides (NPs), peptide hormones with natriuretic, diuretic, and vasodilating properties, exert a potent control on the lipolysis in human adipocytes via the activation of the type A guanylyl cyclase receptor (1, 2). In the current study we investigated the intracellular mechanisms involved in the NP-stimulated lipolytic effect in human preadipocytes and adipocytes. We demonstrate that the atrial NP (ANP)-induced lipolysis in human adipocytes was associated with an enhanced serine phosphorylation of the hormone-sensitive lipase (HSL). Both ANP-mediated lipolysis and HSL phosphorylation were inhibited in the presence of increasing concentrations of the guanylyl cyclase inhibitor LY-83583. ANP did not modulate the activity of the cAMP-dependent protein kinase (PKA). Moreover, H-89, a PKA inhibitor, did not affect the ANP-induced lipolysis. On primary cultures of human preadipocytes, the ANP-mediated lipolytic effect was dependent on the differentiation process. On differentiated human preadipocytes, ANP-mediated lipolysis, associated with an increased phosphorylation of HSL and of perilipin A, was strongly decreased by treatment with the inhibitor of the cGMP-dependent protein kinase I (cGKI), Rp-8-pCPT-cGMPS. Thus, ANP-induced lipolysis in human adipocytes is a cGMP-dependent pathway that induces the phosphorylation of HSL and perilipin A via the activation of cGKI. The present study shows that lipolysis in human adipocytes can be controlled by an independent cGKI-mediated signaling as well as by the classical cAMP/PKA pathway.  (+info)

Transport mechanisms of diuresis in Malpighian tubules of insects. (19/116)

We have studied Malpighian tubules of Aedes aegypti using a variety of methods: Ramsay fluid secretion assay, electron probe analysis of secreted fluid, in vitro microperfusion and two-electrode voltage clamp. Collectively, these methods have allowed us to elucidate transepithelial transport mechanisms under control conditions and in the presence of diuretic peptides. Mosquito natriuretic peptide (MNP), a corticotropin-releasing factor (CRF)-like diuretic peptide, selectively increases transepithelial secretion of NaCl and water, meeting the NaCl loads of the blood meal. The intracellular messenger of MNP is cAMP, which increases the Na+ conductance and activates the Na+/K+/2Cl- -cotransporter in the basolateral membrane of principal cells. Leucokinin non-selectively increases transepithelial NaCl and KCl secretion, which may deal with hemolymph volume expansions or reduce the flight pay load upon eclosion from the aquatic habitat. The non-selective NaCl and KCl diuresis stems from the increase in septate junctional Cl- conductance activated by leucokinin using Ca2+ as second messenger. Fundamental to diuretic mechanisms are powerful epithelial transport mechanisms in the distal segment of the Malpighian tubules, where transepithelial secretion rates can exceed the capacity of mammalian glomerular kidneys in the renal turnover of the extracellular fluid compartment. In conjunction with powerful epithelial transport mechanisms driven by the V-type H+-ATPase, diuretic hormones enable hematophagous and probably also phytophagous insects to deal with enormous dietary loads, thereby contributing to the evolutionary success of insects.  (+info)

Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. (20/116)

1. C-type natriuretic peptide (CNP) and its receptor guanylyl cyclase (GC-B) are expressed in the heart and modulate cardiac contractility in a cGMP-dependent manner. Since the distal cellular signalling pathways remain unclear, we evaluated the peptide effects on cardiac function and calcium regulation in wild-type (WT) and transgenic mice with cardiac overexpression of cGMP-dependent protein kinase I (PKG ITG). 2. In isolated, perfused working WT hearts, CNP (10 nm) provoked an immediate increase in the maximal rates of contraction and relaxation, a small increase in the left ventricular systolic pressure and a decrease in the time of relaxation. These changes in cardiac function were accompanied by a marked increase in the levels of Ser16-phosphorylated phospholamban (PLB). 3. In PKG ITG hearts, the effects of CNP on cardiac contractility and relaxation as well as on PLB phosphorylation were markedly enhanced. 4. CNP increased cell shortening and systolic Cai2+ levels, and accelerated Cai2+ decay in isolated, Indo-1/AM-loaded WT cardiomyocytes, and these effects were enhanced in PKG I-overexpressing cardiomyocytes. 5. 8-pCPT-cGMP, a membrane-permeable PKG activator, mimicked the contractile and molecular actions of CNP, the effects again being more pronounced in PKG ITG hearts. In contrast, the cardiac responses to beta-adrenergic stimulation were not different between genotypes. 6. Taken together, our data indicate that PKG I is a downstream target activated by the CNP/GC-B/cGMP-signalling pathway in cardiac myocytes. cGMP/PKG I-stimulated phosphorylation of PLB and subsequent activation of the sarcoplasmic reticulum Ca2+ pump appear to mediate the positive inotropic and lusitropic responses to CNP.  (+info)

Nesiritide does not improve renal function in patients with chronic heart failure and worsening serum creatinine. (21/116)

BACKGROUND: Nesiritide (synthetic human brain natriuretic peptide) is approved for the treatment of symptomatic heart failure. However, studies of brain natriuretic peptide in patients with heart failure have come to conflicting conclusions about effects on glomerular filtration rate (GFR), effective renal plasma flow, natriuresis, and diuresis. METHODS AND RESULTS: To identify a population at high risk of renal dysfunction with conventional treatment, we selected patients with a creatinine level increased from baseline (within 6 months). We examined the effects of nesiritide on GFR (measured by iothalamate clearance), renal plasma flow (measured by para-amino hippurate clearance), urinary sodium excretion, and urine output in a double-blind, placebo-controlled, crossover study. Patients received nesiritide (2 microg/kg IV bolus followed by an infusion of 0.01 microg/kg per minute) or placebo for 24 hours on consecutive days. Nesiritide and placebo data were compared by repeated-measures analysis and Student t test. We studied 15 patients with a recent mean baseline creatinine of 1.5+/-0.4 mg/dL and serum creatinine of 1.8+/-0.8 mg/dL on admission to the study. There were no differences in GFR, effective renal plasma flow, urine output, or sodium excretion for any time interval or for the entire 24-hour period between the nesiritide and placebo study days. For 24 hours, urine output was 113+/-51 mL/h with placebo and 110+/-56 mL/h with nesiritide. GFR during placebo was 40.9+/-25.9 mL/min and with nesiritide was 40.9+/-25.8. CONCLUSIONS: Nesiritide did not improve renal function in patients with decompensated heart failure, mild chronic renal insufficiency, and renal function that had worsened compared with baseline. The lack of effect may be related to renal insufficiency, hemodynamic alterations, sodium balance, severity of heart failure, or drug dose. Understanding the importance of these issues will permit effective and appropriate use of nesiritide.  (+info)

Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. (22/116)

OBJECTIVES: The purpose of this research was to assess the safety and efficacy of ultrafiltration (UF) in patients admitted with decompensated congestive heart failure (CHF). BACKGROUND: Ultrafiltration for CHF is usually reserved for patients with renal failure or those unresponsive to pharmacologic management. We performed a randomized trial of UF versus usual medical care using a simple UF device that does not require special monitoring or central intravenous access. METHODS: Patients admitted for CHF with evidence of volume overload were randomized to a single, 8 h UF session in addition to usual care or usual care alone. The primary end point was weight loss 24 h after the time of enrollment. RESULTS: Forty patients were enrolled (20 UF, 20 usual care). Ultrafiltration was successful in 18 of the 20 patients in the UF group. Fluid removal after 24 h was 4,650 ml and 2,838 ml in the UF and usual care groups, respectively (p = 0.001). Weight loss after 24 h, the primary end point, was 2.5 kg and 1.86 kg in the UF and usual care groups, respectively (p = 0.240). Patients tolerated UF well. CONCLUSIONS: The early application of UF for patients with CHF was feasible, well-tolerated, and resulted in significant weight loss and fluid removal. A larger trial is underway to determine the relative efficacy of UF versus standard care in acute decompensated heart failure.  (+info)

New cardioprotective agent K201 is natriuretic and glomerular filtration rate enhancing. (23/116)

BACKGROUND: K201 (JTV519) is a newly developed 1,4-benzothiazepine drug with antiarrhythmic and cardioprotective properties. It functions via stabilization of the ryanodine receptor-calcium release channel in the heart (RyR2). This receptor has been identified in the kidney, and in vitro studies suggest a role in the control of renal hemodynamics. To date, the in vivo function of this receptor is undefined. We hypothesized that this new drug, which is being developed for the treatment of heart failure for its myocardial actions, also possesses renal hemodynamic enhancing and excretory properties. We also used immunohistochemistry to identify RyR2 in the normal canine kidney. METHODS AND RESULTS: We investigated the renal actions of K201 during intrarenal infusion in normal anesthetized dogs. K201 was infused after baseline measurements at 2 doses (0.1 and 0.5 mg.kg(-1).min(-1)). Immunohistochemistry was used to identify RyR2 presence in the kidney not exposed to K201. K201 was potently natriuretic and diuretic, with glomerular filtration rate- and renal blood flow-enhancing actions. The excretory responses to K201 administration were associated with decreases in distal tubular reabsorption of sodium despite a mild decrease in mean arterial pressure, which returned to baseline levels after K201 discontinuation. Immunohistochemistry of the normal canine kidney revealed the presence of RyR2 in the medullary collecting duct cells. CONCLUSIONS: We report for the first time that the newly developed cardioprotective drug K201 possesses natriuretic, diuretic, glomerular filtration rate-enhancing, and vasodilating properties that go beyond myocardial actions and may support its therapeutic role in treatment of heart failure.  (+info)

Single-nucleotide polymorphisms for diagnosis of salt-sensitive hypertension. (24/116)

BACKGROUND: Salt-sensitive (SS) hypertension affects >30 million Americans and is often associated with low plasma renin activity. We tested the diagnostic validity of several candidate genes for SS and low-renin hypertension. METHODS: In Japanese patients with newly diagnosed, untreated hypertension (n = 184), we studied polymorphisms in 10 genes, including G protein-coupled receptor kinase type 4 (GRK4), some variations of which are associated with hypertension and impair D1 receptor (D1R)-inhibited renal sodium transport. We used the multifactor dimensionality reduction method to determine the genotype associated with salt sensitivity (> or =10% increase in blood pressure with high sodium intake) or low renin. To determine whether the GRK4 genotype is associated with impaired D1R function, we tested the natriuretic effect of docarpamine, a dopamine prodrug, in normotensive individuals with or without GRK4 polymorphisms (n = 18). RESULTS: A genetic model based on GRK4 R65L, GRK4 A142V, and GRK4 A486V was 94.4% predictive of SS hypertension, whereas the single-locus model with only GRK4 A142V was 78.4% predictive, and a 2-locus model of GRK4 A142V and CYP11B2 C-344T was 77.8% predictive of low-renin hypertension. Sodium excretion was inversely related to the number of GRK4 variants in hypertensive persons, and the natriuretic response to dopaminergic stimulation was impaired in normotensive persons having > or =3 GRK4 gene variants. CONCLUSIONS: GRK4 gene variants are associated with SS and low-renin hypertension. However, the genetic model predicting SS hypertension is different from the model for low renin, suggesting genetic differences in these 2 phenotypes. Like low-renin testing, screening for GRK4 variants may be a useful diagnostic adjunct for detection of SS hypertension.  (+info)