Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. (73/8610)

A Gram-positive, extremely halotolerant bacterium was isolated from the Great Salt Lake, Utah, USA. The strain, designated NNT (= DSM 11805T), was strictly aerobic, rod-shaped, motile by peritrichous flagella and spore-forming. Strain NNT grew at salinities of 0-20% (w/v) NaCl. A distinctive feature of strain NNT was its optimal growth in salt-free medium. The polar lipid pattern of strain NNT consisted of phosphatidyl glycerol, diphosphatidyl glycerol and two phospholipids of unknown structure. The G + C content of its DNA was 38 mol%. The morphological, physiological and, particularly, the 16S rDNA sequence data, showed that strain NNT was associated with 'Bacillus group 1'. However, the organisms showing the greatest degree of sequence similarity to strain NNT were members of the genus Halobacillus and the species Marinococcus albus, Virgibacillus pantothenticus, Bacillus salexigens and Bacillus dipsosauri. On the basis of chemotaxonomic data, strain NNT was shown to be chemically most similar to B. salexigens and B. dipsosauri, with the greatest degree of similarity being shown to the latter organism. This was consistent with the 16S rDNA sequence data. Members of the genus Halobacillus comprise a chemically distinct group and can easily be distinguished from all other organisms of 'Bacillus group 1'. On the basis of the 16S rDNA data, chemotaxonomy and the physiology of strain NNT, it is proposed that this organism is a member of a new species, within a new genus, for which the name Gracilibacillus halotolerans is proposed. It is also proposed that B. dipsosauri be transferred to this genus as Gracilibacillus dipsosauri comb. nov. and that B. salexigens be transferred to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Finally, additional data is provided to support the transfer of Bacillus pantothenticus to the genus Virgibacillus, as Virgibacillus pantothenticus Heyndrickx et al. (1998).  (+info)

Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. (74/8610)

BACKGROUND: Changes in acid-base balance caused by infusion of a 0.9% saline solution during anesthesia and surgery are poorly characterized. Therefore, the authors evaluated these phenomena in a dose-response study. METHODS: Two groups of 12 patients each who were undergoing major intraabdominal gynecologic surgery were assigned randomly to receive 0.9% saline or lactated Ringer's solution in a dosage of 30 ml x kg(-1) x h(-1). The pH, arterial carbon dioxide tension, and serum concentrations of sodium, potassium, chloride, lactate, and total protein were measured in 30-min intervals. The serum bicarbonate concentration was calculated using the Henderson-Hasselbalch equation and also using the Stewart approach from the strong ion difference and the amount of weak plasma acid. The strong ion difference was calculated as serum sodium + serum potassium - serum chloride - serum lactate. The amount of weak plasma acid was calculated as the serum total protein concentration in g/dl x 2.43. RESULTS: Infusion of 0.9% saline, but not lactated Ringer's solution, caused a metabolic acidosis with hyperchloremia and a concomitant decrease in the strong ion difference. Calculating the serum bicarbonate concentration using the Henderson-Hasselbalch equation or the Stewart approach produced equivalent results. CONCLUSIONS: Infusion of approximately 30 ml x kg(-1) x h(-1) saline during anesthesia and surgery inevitably leads to metabolic acidosis, which is not observed after administration of lactated Ringer's solution. The acidosis is associated with hyperchloremia.  (+info)

Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. (75/8610)

Gustatory activated regions in the cerebral cortex have not been identified precisely in humans. In this study we recorded the magnetic fields from the brain in response to two tastants, 1 M NaCl and 3 mM saccharin. We estimated the location of areas activated sequentially after the onset of stimulation with magnetic source imaging. We investigated the primary gustatory area (area G) precisely, and found it at the transition between the parietal operculum and the insular cortex. The central sulcus was activated less frequently than area G but with almost the same latency in cases of NaCl stimulation. Following area G, we found activation in several cortical regions, e.g. both the frontal operculum and the anterior part of the insula, the hippocampus, the parahippocampal gyrus and the superior temporal sulcus.  (+info)

Alterations in protein expression caused by the hha mutation in Escherichia coli: influence of growth medium osmolarity. (76/8610)

The Hha protein belongs to a new family of regulators involved in the environmental regulation of virulence factors. The aim of this work was to study the effect of the hha mutation on the overall protein pattern of Escherichia coli cells by two-dimensional polyacrylamide gel electrophoresis. The growth medium osmolarity clearly influenced the effect of the hha mutation. The number of proteins whose expression was altered in hha cells, compared with wild-type cells, was three times larger at a high osmolarity than at a low osmolarity. Among the proteins whose expression was modified by the hha allele, both OmpA and protein IIAGlc of the phosphotransferase system could be identified. As this latter enzyme participates in the regulation of the synthesis of cyclic AMP and hence influences the catabolite repression system, we tested whether the expression of the lacZ gene was also modified in hha mutants. This was the case, suggesting that at least some of the pleiotropic effects of the hha mutation could be caused by its effect on the catabolite repression system.  (+info)

Comparison of the antithrombotic effect of PEG-hirudin and heparin in a human ex vivo model of arterial thrombosis. (77/8610)

Polyethylene glycol (PEG)-hirudin is a derivative of hirudin with a long plasma half-life. We have compared the efficacy of PEG-hirudin with unfractionated heparin (UH) in preventing arterial thrombosis. Arterial thrombus formation was induced ex vivo in 12 healthy human volunteers by exposing a tissue factor-coated coverslip positioned in a parallel-plate perfusion chamber to flowing nonanticoagulated human blood drawn directly from an antecubital vein at an arterial wall shear rate of 2600 s-1 for 3.5 minutes. PEG-hirudin, UH, or saline (as control) were administered ex vivo through a heparin-coated mixing device positioned proximal to the perfusion chamber. Platelet and fibrin deposition was quantified by immunoenzymatic measure of the P-selectin and D-dimer content of dissolved plasmin-digested thrombi, respectively. UH was administered to a plasma concentration of 0.35 IU/mL. This concentration prolonged the activated partial thromboplastin time from 32+/-1 seconds to 79+/-4 seconds (P<0.01). UH did not significantly prevent platelet deposition. However, fibrin deposition was reduced by 39% (P<0.05). PEG-hirudin in plasma concentrations of 0.5, 2.5, and 5 microg/mL prolonged the activated partial thromboplastin time to 48+/-2, 87+/-4, and 118+/-4 seconds, respectively. In contrast to UH, PEG-hirudin prevented both platelet and fibrin deposition in a dose-dependent manner with a >80% reduction at 5 microg/mL (P<0.01). Furthermore, the plasma level of PEG-hirudin required to significantly prevent fibrin deposition (0.5 microg/mL) corresponded to a much shorter prolongation of activated partial thromboplastin time (48+/-2 seconds) than that needed for UH (79+/-4 seconds). Thus, our results are compatible with the view that thrombin is greatly involved in recruitment of platelets in evolving thrombi, and that PEG-hirudin is an effective agent for preventing arterial thrombosis in a human ex vivo experimental model.  (+info)

Disk with high oxacillin content discriminates between methicillin-resistant and borderline methicillin-susceptible Staphylococcus aureus strains in disk diffusion assays using a low salt concentration. (78/8610)

A separation between mecA+ strains of Staphylococcus aureus and strains lacking mecA was achieved by the disk diffusion assay and the agar dilution method, utilizing disks containing 5 microg of oxacillin and inocula of approximately 5 x 10(5) CFU/spot, respectively, provided that agar with 0 to 0.5% NaCl and incubation at 30 degrees C were employed. The 5-microg oxacillin disks clearly discriminated between borderline methicillin-susceptible and mecA+ strains. The oxacillin MICs were more affected by the inoculum density and salt concentration than were the methicillin MICs, and oxacillin MICs of 4 to 16 microg/ml were obtained for strains lacking mecA. Significantly higher levels of beta-lactamase production and reduced oxacillin susceptibilities were recorded for strains lacking mecA, in particular strains of phage group V, when agar with >/=2% NaCl was used than when agar with 0 to 0.5% NaCl was employed. The results indicate that the borderline methicillin-susceptible phenotype is a salt-dependent in vitro phenomenon of questionable clinical relevance.  (+info)

Tubuloglomerular feedback in ACE-deficient mice. (79/8610)

In these experiments, we used a strain of angiotensin converting enzyme (ACE) germline null mutant mice, generated by J. H. Krege and co-workers (J. H. Krege, S. W. M. John, L. L. Langenbach, J. B. Hodgin, J. R. Hagaman, E. S. Bachman, J. C. Jennette, D. A. O'Brien, and O. Smithies. Nature 375: 146-148, 1995), to examine the effect of chronic ACE deficiency on the magnitude of tubuloglomerular feedback (TGF) responses. The genotype was determined by PCR on DNA extracted from the tail and was verified after each experiment by assessment of the blood pressure response to an injection of ANG I. To assess TGF responsiveness, we determined the change in stop-flow pressure (PSF) caused by increasing NaCl concentration at the macula densa by using micropuncture techniques. When loop of Henle flow rate was increased from 0 to 40 nl/min, PSF fell from a mean of 42.3 +/- 1.95 to 33.6 +/- 2.09 mmHg (n = 6, P = 0.005) in wild-type mice (+/+), fell from 40.6 +/- 2.35 to 38.6 +/- 1.93 mmHg in heterozygous (+/-) mice (n = 7, P = 0.014), and did not change in homozygous ACE (-/-) mice [36.7 +/- 2.02 mmHg vs. 36.4 +/- 2.01 mmHg; n = 4, P = not significant (NS)]. During an infusion of ANG II at a dose that did not significantly elevate blood pressure (70 ng. kg-1. min-1), TGF response magnitude (PSF 0 - PSF 40) increased from 6.5 +/- 1.4 to 9.8 +/- 1.19 mmHg in +/+ (P = 0.006), from 1.14 +/- 0.42 to 4.6 +/- 1.3 mmHg in +/- (P = 0.016), and from 0.42 +/- 0.25 to 4.02 +/- 1.06 in -/- mice (P = 0.05). Absence of TGF responses in ACE null mutant mice and restoration of near-normal responses during an acute infusion of ANG II supports previous conclusions that ANG II is an essential component in the signal transmission pathway that links the macula densa with the glomerular vascular pole.  (+info)

Urea-associated oxidative stress and Gadd153/CHOP induction. (80/8610)

Urea treatment (100-300 mM) increased expression of the oxidative stress-responsive transcription factor, Gadd153/CHOP, at the mRNA and protein levels (at >/=4 h) in renal medullary mIMCD3 cells in culture, whereas other solutes did not. Expression of the related protein, CCAAT/enhancer-binding protein (C/EBP-beta), was not affected, nor was expression of the sensor of endoplasmic reticulum stress, grp78. Urea modestly increased Gadd153 transcription by reporter gene analysis but failed to influence Gadd153 mRNA stability. Importantly, upregulation of Gadd153 mRNA and protein expression by urea was antioxidant sensitive. Accordingly, urea treatment was associated with oxidative stress, as quantitated by intracellular reduced glutathione content in mIMCD3 cells. In addition, antioxidant treatment partially inhibited the ability of urea to activate transcription of an Egr-1 luciferase reporter gene. Therefore oxidative stress represents a novel solute-signaling pathway in the kidney medulla and, potentially, in other tissues.  (+info)